Tohoku Mathematical Journal

The rigidity for real hypersurfaces in a complex projective space

Ryoichi Takagi, In-Bae Kim, and Byung Hak Kim

Full-text: Open access

Article information

Source
Tohoku Math. J. (2), Volume 50, Number 4 (1998), 531-536.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1178224896

Digital Object Identifier
doi:10.2748/tmj/1178224896

Mathematical Reviews number (MathSciNet)
MR1653426

Zentralblatt MATH identifier
0931.53025

Subjects
Primary: 53C42: Immersions (minimal, prescribed curvature, tight, etc.) [See also 49Q05, 49Q10, 53A10, 57R40, 57R42]
Secondary: 53C30: Homogeneous manifolds [See also 14M15, 14M17, 32M10, 57T15]

Citation

Takagi, Ryoichi; Kim, In-Bae; Kim, Byung Hak. The rigidity for real hypersurfaces in a complex projective space. Tohoku Math. J. (2) 50 (1998), no. 4, 531--536. doi:10.2748/tmj/1178224896. https://projecteuclid.org/euclid.tmj/1178224896


Export citation

References

  • [1] Y -W CHOE, H S KIM, I -B KIMANDR TAKAGI, Rigidity theorems for real hypersurfaces in a complex projective space, Hokkaido Math J 25 (1996), 433-451
  • [2] H S KIM AND R. TAKAGI, The type number of real hypersurfaces in Pn(C Tsukuba J Math 2 (1996), 349-356
  • [3] I -B KIM, B H KIM AND H. SONG, On geodesic hyperspheres in a complex projective space, Nihonka Math J 8 (1997), 29-36
  • [4] S -B LEE, I. -B KIM, N. -G KIM AND S. S AHN, A rigidity theorem for real hypersurfaces in a comple projective space, Comm Korean Math Soc 12 (1997), 1007-1013
  • [5] Y J SUH AND R. TAKAGI, A rigidity for real hypersurfaces in a complex projective space, Thok Math J 43 (1991), 501-507
  • [6] R TAKAGI, On homogeneous real hypersurfaces in a complex projective space, Osaka J Math 1 (1973), 495-506
  • [7] R TAKAGI, Real hypersurfaces in a complex projective space with constant principal curvatures I;II, J Math Soc Japan 27 (1975), 45-53; 507-516