Tohoku Mathematical Journal

A characterization of certain weakly pseudoconvex domains

Akio Kodama

Full-text: Open access

Article information

Source
Tohoku Math. J. (2), Volume 51, Number 1 (1999), 55-64.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1178224852

Digital Object Identifier
doi:10.2748/tmj/1178224852

Mathematical Reviews number (MathSciNet)
MR1671727

Zentralblatt MATH identifier
0938.32020

Subjects
Primary: 32T25: Finite type domains

Citation

Kodama, Akio. A characterization of certain weakly pseudoconvex domains. Tohoku Math. J. (2) 51 (1999), no. 1, 55--64. doi:10.2748/tmj/1178224852. https://projecteuclid.org/euclid.tmj/1178224852


Export citation

References

  • [1] H ALEXANDER, Proper holomorphic mappings in C", Indiana Univ Math J 26 (1977), 137-146
  • [2] S R BELL, The Bergman kernel function and proper holomorphic mappings, Trans Amer Mat Soc 270(1982), 685-691
  • [3] S R BELL, Local regularity of CR homeomorphisms, Duke Math J 57 (1988), 295-30
  • [4] D BURNS AND S SHNIDER, Real hypersurfaces in complex manifolds, Proc Sympos Pure Mat 30 (1977), 141-168
  • [5] G DINI AND A SELVAGGI PRIMICERIO, Localization principle of automorphisms on generalize pseudoellipsoids, to appear in J Geom Anal
  • [6] G DINI AND A SELVAGGI PRIMICERIO, Localizationprinciplefor a class of Reinhardtdomains, Seminar di Geometria 1994-1995, Bologna (1996), 117-127
  • [7] F FORSTNERIC AND J P RosAY, Localization of the Kobayashi metric and the boundary continuit of proper holomorphic mappings, Math Ann 279 (1987), 239-252
  • [8] R E GREENE AND S G KRANTZ, Characterizations of certain weakly pseudoconvex domains wit non-compact automorphism groups, Lecture Notes in Math1268, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris and Tokyo, 1987, 121-157
  • [9] S HELGASON, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, London, Toronto, Sydney and San Francisco, 1978
  • [10] S KOBAYASHI AND K NOMIZU, Foundations of Differential Geometry, Volume I, Interscienc Publishers, New York and London, 1963
  • [11] A KODAMA, Characterizations of certain weakly pseudoconvex domains E(k, oc) in C", Thoku Mat J 40 (1988), 343-365
  • [12] A KODAMA, A characterization of certain domains with good boundary points in the sense o Greene-Krantz, Kodai Math J 12 (1989), 257-269
  • [13] A KODAMA, A characterization of certain domains with good boundary points in the sense o Greene-Krantz, II, Thoku Math J 43 (1991), 9-25
  • [14] A KODAMA, A characterization of certain domains with good boundary points in the sense o Greene-Krantz, III, Osaka J Math 32 (1995), 1055-1063
  • [15] A KODAMA, S G KRANTZ AND D MA, A characterization of generalized complex ellipsoids in C and related results, Indiana Univ Math J 41 (1992), 173-195
  • [16] R NARASIMHAN, Several complex variables, Univ Chicago Press, Chicago and London, 197
  • [17] I NARUKI, The holomorphic equivalence problem for a class of Reinhardt domains, Publ Res Ins Math Sci, Kyoto Univ 4 (1968), 527-543
  • [18] S I PINCHUK, On the analytic continuation of holomorphic mappings, Math USSR Sb 27 (1975), 375-392
  • [19] S I PINCHUK, Holomorphic maps in C" and the problem of holomorphic equivalence, Encyclopaedi of Math Sciences, Vol 9, G M Khenkin, ed, Several Complex Variables III, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris and Tokyo, 1989, 173-200
  • [20] J P ROSAY, Sur une caracterisation de la boule parmi les domaines de C" par son group d'automorphismes, Ann Inst Fourier (Grenoble) 29 (1979), 91-97
  • [21] W RUDIN, Function Theory in the Unit Ball of C1, Springer-Verlag, New York, Heidelberg and Berlin, 1980
  • [22] A E TUMANOV, The geometry of CR-manifolds, Encyclopaedia of Math Sciences, Vol 9, G Khenkin, ed, Several Complex Variables III, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris and Tokyo, 1989, 201-222
  • [23] S M WEBSTER, Pseudo-hermitian structures on a real hypersurface, J Diff Geom 13 (1978), 25-4
  • [24] S M WEBSTER, On the transformation group of a real hypersurface, Trans Amer Math Soc 23 (1977), 179-190
  • [25] B Wong, Characterization of the unit ball in C" by its automorphism group, Invent. Math 41 (1977), 253-257