Tohoku Mathematical Journal

The splitting and deformations of the generalized Gauss map of compact CMC surfaces

Reiko Miyaoka

Full-text: Open access

Article information

Tohoku Math. J. (2), Volume 51, Number 1 (1999), 35-53.

First available in Project Euclid: 3 May 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 53C43: Differential geometric aspects of harmonic maps [See also 58E20]
Secondary: 53A10: Minimal surfaces, surfaces with prescribed mean curvature [See also 49Q05, 49Q10, 53C42]


Miyaoka, Reiko. The splitting and deformations of the generalized Gauss map of compact CMC surfaces. Tohoku Math. J. (2) 51 (1999), no. 1, 35--53. doi:10.2748/tmj/1178224851.

Export citation


  • [AA] R AIYAMA AND K. AuAAWA, Kenmotsu type representation formula for surfaces with prescribed mean curvature in S3(c) and adjusting it for CMC surfaces, preprint, Tsukuba Univ and Sizuoka Univ (1997)
  • [AAMU] R AIYAMA, K AKUTAGAWA, R MIYAOKA AND M UMEHARA, A global correspondenc between CMC-surfaces in P/?3 and pairs of non-holomorphic harmonicmaps into S2, preprint, Tsukuba Univ, Sizuoka Univ, Tokyo Inst Tech and Osaka Univ (1997)
  • [B] F E BURSTALL, Harmonic tori in spheres and complex projective spaces, J Reine Angew Mat 469(1995), 149-177
  • [BP] F E BURSTALL AND F. PEDIT, Harmonic maps via Adler-Kostant-Symes theory, Harmonic map and integrable systems (Fordy and Wood, eds), Vieweg, 1993, pp 221-272
  • [BW] J BOLTON AND L. WOODWARD, Congruence theorems for harmonic maps from a Riemann surfac into CP" and S", J London Math Soc 45 (1992), 363-376
  • [HL] W HSIANG AND B LAWSON, Minimal submanifolds of low cohomogeneity, J Differential Geo 5 (1971), 1-38
  • [HO] D A HOFFMAN AND R OSSERMAN, The Gauss map of surfaces in/?3 and/?4, Proc London Mat Soc 50 (1985), 27-56
  • [K 1] N KAPOULEAS, Compact constant mean curvature surfaces in Euclidean three-space, J Differentia Geom 33 (1991), 638-715
  • [K2] N KAPOULEAS, Constant mean curvature surfaces constructed by fusing Wente tori, Inven Math 119 (1995), 443-518
  • [LI] H B LAWSON, Complete minimal surfaces in S3, Ann of Math92 (1970), 335-37
  • [L2] H B LAWSON, Some intrinsic characterizations of minimal surfaces, J Analyse Mat 24(1971), 151-161
  • [M] R MIYAOKA, The family of isometric superconformal harmonic maps and the affine Tod equations, ! Reine Angew Math 481 (1996), 1-25
  • [Mu] M MUKAI, The deformation of harmonic maps given by the Clifford tori, Kodai Math J 2 (1997), 252-268
  • [S] M SAKAKI, Minimal surfaces with the Ricci condition in 4-dimensional space forms, Proc Ame Math Soc 121 (1994), 573-577