Tohoku Mathematical Journal

Modular inequalities for the Calderón operator

María J. Carro and Hans Heinig

Full-text: Open access


If $P,Q:[0,\infty)\to$ are increasing functions and $T$ is the Calderón operator defined on positive or decreasing functions, then optimal modular inequalities $\int P(Tf)\leq C\int Q(f)$ are proved. If $P=Q$, the condition on $P$ is both necessary and sufficient for the modular inequality. In addition, we establish general interpolation theorems for modular spaces.

Article information

Tohoku Math. J. (2), Volume 52, Number 1 (2000), 31-46.

First available in Project Euclid: 3 May 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 46M35: Abstract interpolation of topological vector spaces [See also 46B70]
Secondary: 46E30: Spaces of measurable functions (Lp-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)


Carro, María J.; Heinig, Hans. Modular inequalities for the Calderón operator. Tohoku Math. J. (2) 52 (2000), no. 1, 31--46. doi:10.2748/tmj/1178224656.

Export citation


  • [AM] M ARINO AND B MUCKENHOUPT, Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for non-increasing functions, Trans Amer Math Soc 320 (1990), 727-735
  • [BS] C BENNETT AND R SHARPLEY, Interpolation of Operators, Academic Press, 198
  • [CS] M J CARRO AND J SORIA, The Hardy-Littlewood maximal function and weighted Lorentz spaces, London Math Soc 55(1997), 146-158
  • [C] CiANCHI, Hardy inequalities in Orlicz spaces, Trans Amer Math Soc 351 (1999), 2459-2478
  • [CW] C CORDONEANDl WIK, Maximal functions and related weight classes, Publ Mat 38 (1994), 127-15
  • [HLP] G. H HARDY, J E LITTLEWOOD AND G. POLYA, Inequalities, Cambridge Univ Press, 195
  • [HL] H HEINIG AND A LEE, Sharp Paley-Titchmarsh inequalities in Orlicz spaces, Real Anal Exchange 2 (1995), 244-257
  • [K] S KOIZUMI, Contributionto the theory of interpolation of operations, Osaka J Math 8 (1971), 135-14
  • [KK] V KOKILASHVILI AND M KRBEC, Weighted inequalities in Lorentz and Orlicz spaces, World Scientific, Singapore, 1991
  • [M] T. MIYAMOTO, On some interpolation theorems of quasilinear operators, Math Japonica 42 (1995), 545 556
  • [Mu] B. MUCKENHOUPT, Hardy's inequality with weights, Studia Math 44 (1972), 31-3
  • [L] Q LAI, Weighted integral inequalities for the Hardy-type operator and fractional maximal operator, London Math Soc 49 (1994), 224-266
  • [S] E. SAWYER, Boundedness of classical operators on classical Lorentz spaces, Studia Math 96 (1990), 145 158
  • [St] E M. STEIN, Singular integrals and differentiability properties of functions, Princeton University Press, 1970.