Tohoku Mathematical Journal

Normal coordinate systems from a viewpoint of real analysis

Norio Shimakura

Full-text: Open access

Abstract

Normal coordinate systems for pseudo-Riemannian metrics are investigated from a viewpoint of the theory of partial differential equations. Given a cartesian coordinate system $x$, a local metric for which $x$ is a normal coordinate system is determined by a metric tensor at the origin and any one of certain three matrix functions. These are related one another by three partial differential equations. Solvability of these equations in $C^{\infty}$ framework and power series expansion of solutions are discussed.

Article information

Source
Tohoku Math. J. (2), Volume 52, Number 4 (2000), 533-553.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1178207754

Digital Object Identifier
doi:10.2748/tmj/1178207754

Mathematical Reviews number (MathSciNet)
MR1793935

Zentralblatt MATH identifier
1004.53028

Subjects
Primary: 53B30: Lorentz metrics, indefinite metrics
Secondary: 53B20: Local Riemannian geometry

Citation

Shimakura, Norio. Normal coordinate systems from a viewpoint of real analysis. Tohoku Math. J. (2) 52 (2000), no. 4, 533--553. doi:10.2748/tmj/1178207754. https://projecteuclid.org/euclid.tmj/1178207754


Export citation

References

  • [BG] M. S. BAOUENDI AND C. GOULAOUIC, Cauchy problems with characteristic initial hypersurface, Comm. Pure Appl. Math. 26 (1973), 455-475.
  • [BGM] M. BERGER, P. GAUDUCHON AND E. MAZET, Le spectre d'une variete Riemannienne, Lecture Notes i Math. 194, Springer, Berlin-New York, 1971.
  • [C] E. CARTAN, Lecons sur la Geometrie des Espaces de Riemann, Gauthier-Villars, Paris, 1963
  • [Gi] P. B. GILKEY, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, Second Edi tion, CRC Press, Boca Raton, 1995.
  • [Gr] A. GRAY, Tubes, Addison-Wesley Publ. Company, Redwood City, 1990
  • [Gl] P. GUNTHER, Spinorkalkil und Normalkoordinaten, Z. Angew. Math. Mech. 55 (1975), 205-210
  • [Gu2] P. GUNTHER, Huygens' Principle and Hyperbolic Equations, Perspect. Math. 5, Academic Press, Sa Diego, 1988.
  • [H] G. HERGLOTZ, Uber die Bestimmung eines Linienelementes in Normalkoordinatenaus dem Riemannsche Kriimmungstensor, Math. Ann. 93 (1924), 46-53.
  • [KB] O. KOWALSKI AND M. BELGER, Riemannian metrics with the prescribed curvature tensor and all it covariant derivatives at one point, Math. Nachr. 168 (1994), 209-225.
  • [P] I. G. PETROVSKY, Lectures on Partial Differential Equations, Interscience Publishers, New York, 1964
  • [Sa] T. SAKAI, On eigen-values of Laplacian and curvature of Riemannian manifold, Tohoku Math. J. 2 (1971), 589-603.
  • [Si] Y. SIBUYA, Linear Differential Equations in the Complex Domain: Problems of Analytic Continuation, Transl. Math. Monogr. 82, American Math. Soc. Providence, 1990.
  • [Wa] G. N. WATSON, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, London, 1966
  • [Wi] J. T. WILLMORE, Riemannian Geometry, Clarendon Press, Oxford, 1993