Tohoku Mathematical Journal

Completion of real fans and Zariski-Riemann spaces

Günter Ewald and Masa-Nori Ishida

Full-text: Open access

Abstract

Given a real fan in a real space consisting of real convex polyhedral cones, we construct a complete real fan which contains the fan, by two completely different methods. The first one is purely combinatorial and a proof of a related version was sketched earlier by Ewald. The second one is based on Nagata’s method of imbedding an abstract variety into a complete variety. For the second method, we introduce the theory of Zariski-Riemann space of a fan

Article information

Source
Tohoku Math. J. (2), Volume 58, Number 2 (2006), 189-218.

Dates
First available in Project Euclid: 22 August 2006

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1156256400

Digital Object Identifier
doi:10.2748/tmj/1156256400

Mathematical Reviews number (MathSciNet)
MR2248429

Zentralblatt MATH identifier
1108.14039

Subjects
Primary: 14M25: Toric varieties, Newton polyhedra [See also 52B20]
Secondary: 52B20: Lattice polytopes (including relations with commutative algebra and algebraic geometry) [See also 06A11, 13F20, 13Hxx]

Citation

Ewald, Günter; Ishida, Masa-Nori. Completion of real fans and Zariski-Riemann spaces. Tohoku Math. J. (2) 58 (2006), no. 2, 189--218. doi:10.2748/tmj/1156256400. https://projecteuclid.org/euclid.tmj/1156256400


Export citation

References

  • G. Ewald, Combinatorial convexity and algebraic geometry, Grand. Texts in Math. 168, Springer-Verlag, New York, 1996.
  • K. Fujiwara, Rigid geometry, Lefschetz-Verdier trace formula and Deligne's conjecture, Invent. Math. 127 (1997), 489--533.
  • W. Fulton, Introduction to toric varieties, Ann. of Math. Stud. 131, Princeton University Press, Princeton, N.J., 1993.
  • R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer-Verlag, New York-Heidelberg, 1977.
  • S. Kuroda, The infiniteness of the SAGBI bases for certain invariant rings, Osaka J. Math. 39 (2002), 665--680.
  • M. Nagata, Imbedding of an abstract variety in a complete variety, J. Math. Kyoto Univ. 2 (1962), 1--10.
  • M. Nagata, A generalization of the imbedding problem of an abstract variety in a complete variety, J. Math. Kyoto Univ. 3 (1963), 89--102.
  • T. Oda, Convex Bodies and Algebraic Geometry, An Introduction to the Theory of Toric Varieties, Ergebnisse der Math. (3), 15, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1988.
  • T. Oda and H. S. Park, Linear Gale transforms and Gelfand-Kapranov-Zelevinskij decompositions, Tohoku Math. J. (2) 43 (1991), 375--399.
  • B. Sturmfels, Göbner bases and convex polytopes, Univ. Lecture Ser., 8, American Mathematical Society, Provedence, R.I., 1996.
  • H. Sumihiro, Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1--28.
  • H. Sumihiro, Equivariant completion II, J. Math. Kyoto Univ. 15 (1975), 573--605.
  • O. Zariski, Local uniformization of algebraic varieties, Ann. of Math. (2) 41 (1940), 852--896.
  • O. Zariski, The compactness of the Riemann manifold of an abstract field of algebraic functions, Bull. Amer. Math. Soc. 50 (1944), 683--691.
  • O. Zariski and P. Samuel, Commutative Algebra II, Grad. Texts in Math. 29, Springer-Verlag, New York-Heidelberg, 1975.