Tohoku Mathematical Journal

Toric Fano three-folds with terminal singularities

Alexander M. Kasprzyk

Full-text: Open access

Abstract

This paper classifies all toric Fano $3$-folds with terminal singularities. This is achieved by solving the equivalent combinatorial problem; that of finding, up to the action of $GL(3,\Z)$, all convex polytopes in $\Z^3$ which contain the origin as the only non-vertex lattice point. We obtain, up to isomorphism, $233$ toric Fano $3$-folds possessing at worst $\Q$-factorial singularities (of which $18$ are known to be smooth) and $401$ toric Fano $3$-folds with terminal singularities that are not $\Q$-factorial.

Article information

Source
Tohoku Math. J. (2), Volume 58, Number 1 (2006), 101-121.

Dates
First available in Project Euclid: 18 April 2006

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1145390208

Digital Object Identifier
doi:10.2748/tmj/1145390208

Mathematical Reviews number (MathSciNet)
MR2221794

Zentralblatt MATH identifier
1118.14047

Subjects
Primary: 14J45: Fano varieties
Secondary: 14J30: $3$-folds [See also 32Q25] 14M25: Toric varieties, Newton polyhedra [See also 52B20] 52B20: Lattice polytopes (including relations with commutative algebra and algebraic geometry) [See also 06A11, 13F20, 13Hxx]

Keywords
Toric Fano $3$-folds terminal singularities convex polytopes

Citation

Kasprzyk, Alexander M. Toric Fano three-folds with terminal singularities. Tohoku Math. J. (2) 58 (2006), no. 1, 101--121. doi:10.2748/tmj/1145390208. https://projecteuclid.org/euclid.tmj/1145390208


Export citation

References

  • A. A. Borisov and L. A. Borisov, Three-dimensional toric Fano varieties with terminal singularities, Text in Russian, Unpublished.
  • A. A. Borisov and L. A. Borisov, Singular toric Fano three-folds, Russian Acad. Sci. Sb. Math. 75 (1993), 277--283.
  • A. A. Borisov, Convex lattice polytopes and cones with few lattice points inside, from a birational geometry viewpoint, arXiv.math.AG/0001109.
  • D. A. Cox, Update on toric geometry, Geometry of toric varieties, 1--41, Sémin. Congr. 6, Soc. Math. France, Paris, 2002.
  • D. I. Dais, Resolving $3$-dimensional toric singularities, Geometry of toric varietics, 155--186, Sémin. Congr. 6, Soc. Math. France, Paris, 2002.
  • V. I. Danilov, The geometry of toric varieties, Russian Math. Surveys 33 (1978), 97--154.
  • G. Ewald, Combinatorial convexity and algebraic geometry, Grad. Texts in Math. 168, Springer, New York, 1996.
  • O. Fujino and H. Sato, Introduction to the toric Mori theory, arXiv.math.AG/0307180v1.
  • W. Fulton, Introduction to toric varieties, Ann. of Math. Stud. 131, Princeton Univ. Press, Princeton, N.J., 1993.
  • S. Mori, D. R. Morrison and I. Morrison, On four-dimensional terminal quotient singularities, Math. Comp. 51 (1988), 769--786.
  • S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. (2) 116 (1982), 133--176.
  • D. R. Morrison, Canonical quotient singularities in dimension three, Proc. Amer. Math. Soc. 93 (1985), 393--396.
  • D. R. Morrison and G. Stevens, Terminal quotient singularities in dimensions three and four, Proc. Amer. Math. Soc. 90 (1984), 15--20.
  • T. Oda, Torus embeddings and applications, Tata Inst. Fund. Res. Lectures on Math. and Phys. 57, Tata Inst. Fund. Res., Bombay by Springer, Berlin-New York, 1978.
  • M. Reid, Minimal models of canonical $3$-folds, Algebraic varieties and analytic varieties, (Tokyo, 1981), 131--180, Adv. Stud. Pure Math. 1, North-Holland, Amsterdam, 1983.
  • M. Reid, Young person's guide to canonical singularities, Algebraic Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), 345--414, Proc. Sympos. Pure Math. 46, pt. 1, Amer. Math. Soc., Providence, R.I., 1987.
  • H. E. Scarf, Integral polyhedra in three space, Math. Oper. Res. 10 (1985), 403--438.
  • K. Suzuki, On Fano indicies of $\mathbbQ$-fano $3$-folds, arXiv.math.AG/0210309v1.
  • J. A. Wiśniewski, Toric Mori theory and fano manifolds, Geometry of toric varieties, 249--272, Sémin. Congr. 6, Soc. Math. France, Paris, 2002.