Tohoku Mathematical Journal

Eigenforms of the Laplacian for Riemannian V-submersions

Peter Gilkey, Hong-Jong Kim, and JeongHyeong Park

Full-text: Open access

Abstract

We study when the pull-back of an eigenform of the Laplacian on the base of a compact Riemannian $V$-submersion is an eigenform of the Laplacian on the total space of the submersion, and when the associated eigenvalue can change.

Article information

Source
Tohoku Math. J. (2), Volume 57, Number 4 (2005), 505-519.

Dates
First available in Project Euclid: 23 February 2006

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1140727070

Digital Object Identifier
doi:10.2748/tmj/1140727070

Mathematical Reviews number (MathSciNet)
MR2203544

Zentralblatt MATH identifier
1106.58022

Subjects
Primary: 58J50: Spectral problems; spectral geometry; scattering theory [See also 35Pxx]

Keywords
Laplacian eigenfunction eigenform Riemannian V-submersion

Citation

Gilkey, Peter; Kim, Hong-Jong; Park, JeongHyeong. Eigenforms of the Laplacian for Riemannian V-submersions. Tohoku Math. J. (2) 57 (2005), no. 4, 505--519. doi:10.2748/tmj/1140727070. https://projecteuclid.org/euclid.tmj/1140727070


Export citation

References

  • Y. J. Chiang, Spectral geometry of $V$-Manifolds and its application to harmonic maps, Differential geometry: partial differential equations on manifolds (Los Angles, CA, 1990), 93--99, Proc. Sympos. Pure Math. 54, Amer. Math. Soc., Providence, R.I., 1993.
  • C. Farsi, Orbifold spectral theory, Rocky Mountain J. Math. 31 (2001), 215--235.
  • P. Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem Second Edition, Studies in Advanced Mathematics, CRC Press, Boca Raton, Fla., 1995.
  • P. Gilkey, J. V. Leahy and J. H. Park, The spectral geometry of the Hopf fibration, J. Phys. A 29 (1996), 5645--5656.
  • P. Gilkey, J. V. Leahy and J. H. Park, Spinors, spectral geometry, and Riemannian submersions, Lecture Notes Series 40, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1998.
  • P. Gilkey, J. V. Leahy and J. H. Park, Eigenvalues of the form valued Laplacian for Riemannian submersions, Proc. Amer. Math. Soc. 126 (1998), 1845--1850.
  • P. Gilkey and J. H. Park, Riemannian submersions which preserve the eigenforms of the Laplacian, Illinois J. Math. 40 (1996), 194--201.
  • C. Gordon, D. Webb and S. Wolpert, Isopectral plane domains and surfaces via Riemannian orbifolds, Invent. Math. 110 (1992), 1--22.
  • R. Harvey and J. Polking, Removable singularities of solutions of linear partial differential equations, Acta. Math. 125 (1970), 39--56.
  • J. Hebda, An example relevant to curvature pinching theorems for Riemannian foliations, Proc. Amer. Math. Soc. 114 (1992), 195--199.
  • C. Hodgson and J. Tysk, Eigenvalue estimate and isoperimetric inequalities for cone-manifolds, Bull. Austral. Math. Soc. 47 (1993), 127--143.
  • H. Kitahara, On a parametrix form in a certain $V$-submersion, Geometry and differential geometry (Proc. Conf., Univ. Haifa, Haifa, 1979), 264--298, Lecture Notes in Math. 792, Springer, New York, 1980.
  • W. Littman, Polar sets and removable singularities of partial differential equations, Ark. Mat. 7 (1967), 1--9.
  • J. H. Park, The spectral geometry of Riemannian submersions for manifolds with boundary, Rocky Mountain J. Math. 30 (2000), 353--369.
  • M. Reed and B. Simon, Methods of modern mathematical physics, vol I-IV, Academic Press, Inc. New York, 1980.
  • I. Satake, On a generalization of the notion of manifold, Proc. Natl. Acad. Sci. USA 42 (1956), 359--363.
  • I. Satake, The Gauss-Bonnet theorem for $V$-manifolds, J. Math. Soc. Japan 9 (1957), 464--492.
  • T. Shioya, Eigenvalues and suspension structure of compact Riemannian orbifolds with positive Ricci curvature, Manuscripta Math. 99 (1999), 509--516.
  • W. P. Thurston, Three-dimensional geometry and topology, Princeton Mathematical Series 35, Princeton University Press, Princeton, N. J., 1997.
  • S. Yorozu, Leaf space of a certain Hopf $r$-foliation, Nihonkai Math. J. 10 (1999), 117--130.