Tohoku Mathematical Journal

Limiting equations and some stability properties for asymptotically almost periodic functional differential equations with infinite delay

Yoshiyuki Hino and Satoru Murakami

Full-text: Open access

Abstract

For asymptotically almost periodic functional differential equations with infinite delay in a Banach space, some stability properties of a bounded solution are deduced from stabilities in a certain limiting equation which is obtained by employing the Bohr topology.

Article information

Source
Tohoku Math. J. (2), Volume 54, Number 2 (2002), 239-257.

Dates
First available in Project Euclid: 11 April 2005

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1113247565

Digital Object Identifier
doi:10.2748/tmj/1113247565

Mathematical Reviews number (MathSciNet)
MR1904951

Zentralblatt MATH identifier
1022.34074

Subjects
Primary: 34K14: Almost and pseudo-periodic solutions
Secondary: 34K20: Stability theory 34K30: Equations in abstract spaces [See also 34Gxx, 35R09, 35R10, 47Jxx] 35B15: Almost and pseudo-almost periodic solutions 35B35: Stability

Citation

Hino, Yoshiyuki; Murakami, Satoru. Limiting equations and some stability properties for asymptotically almost periodic functional differential equations with infinite delay. Tohoku Math. J. (2) 54 (2002), no. 2, 239--257. doi:10.2748/tmj/1113247565. https://projecteuclid.org/euclid.tmj/1113247565


Export citation

References

  • L. Amerio and G. Prouse, Almost-Periodic Functions and Functional Equations, Van Nostrand, New York, 1971.
  • F. A. Atkinson and J. R. Haddock, On determing phase spaces for functional differential equations, Funkcial. Ekvac. 31 (1988), 331--347.
  • P. Bondi, V. Moauro and F. Visentin, Limiting equations in the stability problem, Nonlinear Anal. 1 (1976/77), 123--128.
  • A. D'Anna, Total stability properties for an almost periodic equation by means of limiting equations, Funkcial. Ekvac. 27 (1984), 201--209.
  • H. R. Henrí quez, Periodic solutions of quasi-linear partial functional differential equations with unbounded delay, Funkcial. Ekvac. 37 (1994), 329--343.
  • Y. Hino and S. Murakami, Total stability in abstract functional differential equations with infinite delay, Electron. J. Qual. Theory of Differ. Equ., Proc. 6'th Coll. QTDE, No. 13 (2000), 1--9.
  • Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, Lecture Notes in Math. 1473, Springer-Verlag, Berlin-Heidelberg, 1991.
  • Y. Hino, S. Murakami and T. Yoshizawa, Stability and existence of almost periodic solutions for abstract functional differential equations with infinite delay, Tohoku Math. J. 49 (1997), 133--147.
  • Y. Hino and T. Yoshizawa, Total stability property in limiting equations for a functional differential equation with infinite delay, Časopis pro pěstování matematiky roč. 111 (1986), 62--69.
  • V. Lakshmikantham and S. Leela, Nonlinear Differential Equations in Abstract Spaces, Pergamon Press, Oxford-New York, 1981.
  • T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Appl. Math. Sci. 14, Springer-Verlag, New York, 1975.