Tohoku Mathematical Journal

Extension of CR structures on pseudoconvex CR manifolds with one degenerate eigenvalue

Sanghyun Cho

Full-text: Open access

Abstract

Let $\bar M$ be a smoothly bounded orientable pseudoconvex CR manifold of finite type with at most one degenerate eigenvalue. Then we extend the given CR structure on $M$ to an integrable almost complex structure on the concave side of $M$. Therefore we may regard $M$ as the boundary of a complex manifold.

Article information

Source
Tohoku Math. J. (2), Volume 55, Number 3 (2003), 321-360.

Dates
First available in Project Euclid: 11 April 2005

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1113247478

Digital Object Identifier
doi:10.2748/tmj/1113247478

Mathematical Reviews number (MathSciNet)
MR1993860

Zentralblatt MATH identifier
1046.32012

Subjects
Primary: 32V25: Extension of functions and other analytic objects from CR manifolds

Keywords
CR manifold finite type pseudoconvex

Citation

Cho, Sanghyun. Extension of CR structures on pseudoconvex CR manifolds with one degenerate eigenvalue. Tohoku Math. J. (2) 55 (2003), no. 3, 321--360. doi:10.2748/tmj/1113247478. https://projecteuclid.org/euclid.tmj/1113247478


Export citation

References

  • T. Akahori, A new approach to the local embedding theorem of CR structures for $n\geq4$, Mem. Amer. Math. Soc. 67 (1987).
  • D. Catlin, Subelliptic estimates for the $\opar$-Neumann problem on pseudoconvex domains, Ann. of Math. (2) 126 (1987), 131--191.
  • D. Catlin, A Newlander--Nirenberg theorem for manifolds with boundary Michigan, Math. J. 35 (1988), 233--240.
  • D. Catlin, Estimates of invariant metrics on pseudoconvex domains of dimension two, Math. Z. 200 (1989), 429--466.
  • D. Catlin, Sufficient conditions for the extension of CR structures, J. Geom. Anal. 4 (1994), 467--538.
  • S. Cho, Extension of complex structures on weakly pseudoconvex compact complex manifolds with boundary, Math. Z. 211 (1992), 105--120.
  • S. Cho, Boundary behavior of the Bergman kernel function on some pseudoconvex domains in $\textit\textbf C\kern1pt^n$, Trans. Amer. Math. Soc. 345 (1994), 803--817.
  • S. Cho, Extension of CR-structures on three dimensional pseudoconvex CR manifolds, Nagoya Math. J. 152 (1998), 1--35.
  • J. P. D'Angelo, Real hypersurfaces, order of contact, and applications, Ann. of Math. (2) 115 (1982), 615--637.
  • L. Hörmander, $L^2$ estimates and existence theorems for the $\opar$--operator, Acta Math. 113 (1965), 89--152.
  • L. Hörmander, An Introduction to Complex Analysis in Several Variables, O. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, (1966).
  • H. Jacobowitz and F. Treves, Non--realizable CR structures, Invent. Math. 66 (1982), 231--249.
  • M. Kuranishi, Strongly pseudoconvex CR structures over small balls, Ann. of Math. (2) 115 (1982), 451--500.
  • A. Newlander and L. Nirenberg, Complex Analytic coordinates in almost complex manifolds, Ann. of Math. (2) 65 (1957), 391--404.
  • X. Saint Raymond, A simple Nash--Moser implicit function theorem, Enseign. Math. (2) 35 (1989), 217--226.
  • S. Webster, On the proof of Kuranishi's embedding theorem, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), 183--207.