Tohoku Mathematical Journal

Extension of CR structures on pseudoconvex CR manifolds with one degenerate eigenvalue

Sanghyun Cho

Full-text: Open access


Let $\bar M$ be a smoothly bounded orientable pseudoconvex CR manifold of finite type with at most one degenerate eigenvalue. Then we extend the given CR structure on $M$ to an integrable almost complex structure on the concave side of $M$. Therefore we may regard $M$ as the boundary of a complex manifold.

Article information

Tohoku Math. J. (2), Volume 55, Number 3 (2003), 321-360.

First available in Project Euclid: 11 April 2005

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 32V25: Extension of functions and other analytic objects from CR manifolds

CR manifold finite type pseudoconvex


Cho, Sanghyun. Extension of CR structures on pseudoconvex CR manifolds with one degenerate eigenvalue. Tohoku Math. J. (2) 55 (2003), no. 3, 321--360. doi:10.2748/tmj/1113247478.

Export citation


  • T. Akahori, A new approach to the local embedding theorem of CR structures for $n\geq4$, Mem. Amer. Math. Soc. 67 (1987).
  • D. Catlin, Subelliptic estimates for the $\opar$-Neumann problem on pseudoconvex domains, Ann. of Math. (2) 126 (1987), 131--191.
  • D. Catlin, A Newlander--Nirenberg theorem for manifolds with boundary Michigan, Math. J. 35 (1988), 233--240.
  • D. Catlin, Estimates of invariant metrics on pseudoconvex domains of dimension two, Math. Z. 200 (1989), 429--466.
  • D. Catlin, Sufficient conditions for the extension of CR structures, J. Geom. Anal. 4 (1994), 467--538.
  • S. Cho, Extension of complex structures on weakly pseudoconvex compact complex manifolds with boundary, Math. Z. 211 (1992), 105--120.
  • S. Cho, Boundary behavior of the Bergman kernel function on some pseudoconvex domains in $\textit\textbf C\kern1pt^n$, Trans. Amer. Math. Soc. 345 (1994), 803--817.
  • S. Cho, Extension of CR-structures on three dimensional pseudoconvex CR manifolds, Nagoya Math. J. 152 (1998), 1--35.
  • J. P. D'Angelo, Real hypersurfaces, order of contact, and applications, Ann. of Math. (2) 115 (1982), 615--637.
  • L. Hörmander, $L^2$ estimates and existence theorems for the $\opar$--operator, Acta Math. 113 (1965), 89--152.
  • L. Hörmander, An Introduction to Complex Analysis in Several Variables, O. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, (1966).
  • H. Jacobowitz and F. Treves, Non--realizable CR structures, Invent. Math. 66 (1982), 231--249.
  • M. Kuranishi, Strongly pseudoconvex CR structures over small balls, Ann. of Math. (2) 115 (1982), 451--500.
  • A. Newlander and L. Nirenberg, Complex Analytic coordinates in almost complex manifolds, Ann. of Math. (2) 65 (1957), 391--404.
  • X. Saint Raymond, A simple Nash--Moser implicit function theorem, Enseign. Math. (2) 35 (1989), 217--226.
  • S. Webster, On the proof of Kuranishi's embedding theorem, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), 183--207.