Tohoku Mathematical Journal

Sharp weighted estimates for vector-valued singular integral operators and commutators

Carlos Pérez and Rodrigo Trujillo-González

Full-text: Open access

Abstract

We prove sharp weighted norm inequalities for vector-valued singular integral operators and commutators. We first consider the strong $(p,p)$ case with $p>1$ and then the weak-type $(1,1)$ estimate. Our results do not assume any condition on the weight function and involve iterations of the classical Hardy-Littlewood maximal function.

Article information

Source
Tohoku Math. J. (2), Volume 55, Number 1 (2003), 109-129.

Dates
First available in Project Euclid: 11 April 2005

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1113247449

Digital Object Identifier
doi:10.2748/tmj/1113247449

Mathematical Reviews number (MathSciNet)
MR1956084

Zentralblatt MATH identifier
1053.42021

Subjects
Primary: 42B25: Maximal functions, Littlewood-Paley theory
Secondary: 47G10: Integral operators [See also 45P05]

Keywords
Singular integral operators maximal functions weights

Citation

Pérez, Carlos; Trujillo-González, Rodrigo. Sharp weighted estimates for vector-valued singular integral operators and commutators. Tohoku Math. J. (2) 55 (2003), no. 1, 109--129. doi:10.2748/tmj/1113247449. https://projecteuclid.org/euclid.tmj/1113247449


Export citation

References

  • M. Christ, Lectures on Singular Integral Operators, CBMS Reg. Conf. Ser. Math. 77, Amer. Math. Soc., Providence, RI, 1990.
  • R. Coifman, Distribution function inequalities for singular integrals, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 2838–2839.
  • R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611–635.
  • R. Coifman and Y. Meyer, Wavelets. Calderón-Zygmund and Multilinear Operators, Cambridge Stud. Adv. Math., 48, Cambridge University Press, Cambridge, 1997.
  • D. Cruz-Uribe and C. Pérez, Two weight extrapolation via the maximal operator, J. Funct. Anal. 174 (2000), 1–17.
  • J. Duoandikoetxea, Fourier Analysis, Grad. Stud. Math., 29, Amer. Math. Soc., Providence, RI, 2000.
  • C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115.
  • J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North Holland Math. Studies 116, North Holland, Amsterdam, 1985.
  • J. L. Journé, Calderón-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón, Lecture Notes in Math. 994, Springer-Verlag, New York, 1983.
  • M. A. Krasnosel'skiĭ and Ya. B. Rutickiĭ, Convex Functions and Orlicz Spaces, P. Noordhoff, Groningen, 1961.
  • C. Pérez, Weighted norm inequalities for singular integral operators, J. London Math. Soc. 49 (1994), 296–308.
  • C. Pérez, Endpoint estmates for commutators of singular integral operators, J. Funct. Anal. 128 (1995), 163–185.
  • C. Pérez, On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted $L^p$-spaces with different weights, Proc. London Math. Soc. (3) 71 (1995), 135–157.
  • C. Pérez, Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function, J. Fourier Anal. Appl. 3 (6) (1997), 743–756.
  • C. Pérez, Weighted norm inequalities for the vector-valued maximal function, Trans. Amer. Math. Soc. 352 (2000), 3265–3288.
  • G. Pradolini and C. Pérez, Sharp weighted endpoint estimates for commutators of singular integral operators, Michigan Math. J. 49 (2001), 23–37.
  • M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Monogr. Textbooks Pure Appl. Math. 146, Marcel Dekker, Inc., New York, 1991.
  • A. Torchinsky, Real Variable Methods in Harmonic Analysis, Academic Press, New York, 1988.