Tohoku Mathematical Journal

Complete constant Gaussian curvature surfaces in the Minkowski space and harmonic diffeomorphisms onto the hyperbolic plane

Jose A. Gálvez, Antonio Martínez, and Francisco Milán

Full-text: Open access

Abstract

We complete the global classification of spacelike surfaces in the Minkowski three-space with constant Gaussian curvature in terms of harmonic diffeomorphisms onto the hyperbolic plane. A harmonic representation of them is also obtained.

Article information

Source
Tohoku Math. J. (2), Volume 55, Number 4 (2003), 467-476.

Dates
First available in Project Euclid: 11 April 2005

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1113247124

Digital Object Identifier
doi:10.2748/tmj/1113247124

Mathematical Reviews number (MathSciNet)
MR2017219

Zentralblatt MATH identifier
1061.53041

Subjects
Primary: 53C42: Immersions (minimal, prescribed curvature, tight, etc.) [See also 49Q05, 49Q10, 53A10, 57R40, 57R42]
Secondary: 53C43: Differential geometric aspects of harmonic maps [See also 58E20] 53C50: Lorentz manifolds, manifolds with indefinite metrics 58E20: Harmonic maps [See also 53C43], etc.

Keywords
Gaussian curvature Weierstrass representation harmonic maps

Citation

Gálvez, Jose A.; Martínez, Antonio; Milán, Francisco. Complete constant Gaussian curvature surfaces in the Minkowski space and harmonic diffeomorphisms onto the hyperbolic plane. Tohoku Math. J. (2) 55 (2003), no. 4, 467--476. doi:10.2748/tmj/1113247124. https://projecteuclid.org/euclid.tmj/1113247124


Export citation

References

  • K. Akutagawa, Harmonic diffeomorphisms of the hyperbolic plane, Trans. Amer. Math. Soc. 342 (1994), 325--342.
  • K. Akutagawa and S. Nishikawa, The Gauss map and spacelike surfaces with prescribed mean curvature in Minkowski 3-space, Tôhoku Math. J. 42 (1990), 67--82.
  • T. K. K. Au, L. Tam and T. Y. H. Wan, Hopf differentials and the images of harmonic maps, Comm. Anal. Geom. 10 (2002), 515--573.
  • H. Choi and A. Treibergs, Gauss maps of spacelike constant mean curvature hypersurfaces of Minkowski space, J. Differential Geom. 32 (1990), 775--817.
  • M. Dajczer and K. Nomizu, On flat surfaces in $\e^3_1$ and $\h^3_1$, Manifolds and Lie groups (Notre Damme, Ind., 1980), 71--108, Birkausser, Boston, Mass., 1981.
  • J. Eells and L. Lemaire, Selected topics in harmonic maps, Reg. Conf. Ser. Math. 50, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by Amer. Math. Soc., Providence RI, 1983.
  • J. A. Gálvez and A. Martínez, The Gauss map and second fundamental form of surfaces in $\r^3$, Geom. Dedicata 81 (2000), 181--192.
  • B. Guan, The Dirichlet problem for Monge-Ampère equations in non-convex domains and spacelike hypersurfaces of constant Gauss curvature, Trans. Amer. Math. Soc. 350 (1998), 4955--4971.
  • J. Hano and K. Nomizu, On isometric immersions of the hyperbolic plane into the Lorentz-Minkowski space and the Monge-Ampère equation of a certain type, Math. Ann. 262 (1983), 245--253.
  • J. Jost, Compact Riemann surfaces, Springer-Verlag, Berlin, 1997.
  • O. Kobayashi, Maximal surfaces in the 3-dimensional Minkoski space $\l^3$, Tokyo J. Math. 6 (1983), 297--309.
  • O. Kobayashi, Maximal surfaces with conelike singularities, J. Math. Soc. Japan 36 (1984), 609--617.
  • A. M. Li, Spacelike hypersurfaces with constant Gauss-Kronecker curvature in the Minkowski space, Arch. Math. 64 (1995), 534--551.
  • P. Li and L. F. Tam, The heat equation and harmonic maps of complete manifolds, Invent. Math. 105 (1991), 1--46.
  • T. K. Milnor, Harmonic maps and classical surface theory in Minkowski 3-space, Trans. Amer. Math. Soc. 280 (1983), 161--185.
  • E. A. Ruh and J. Vilms, The tension field of the Gauss map, Trans. Amer. Math. Soc. 149 (1970), 569--573.
  • R. Schoen and S. Yau, On univalent harmonic maps between surfaces, Invent. Math. 44 (1978), 265--278.
  • Y. Shi, L. Tam and T. Y. H. Wan, Harmonic maps on hyperbolic spaces with singular boundary value, J. Differential Geom. 51 (1999), 551--600.
  • A. E. Treibergs, Entire spacelike hypersurfaces of constant mean curvature in Minkowski space, Invent. Math. 66 (1982), 39--56.
  • T. Y. H. Wan, Constant mean curvature surface, harmonic maps and universal Teichmüler space, J. Differential Geom. 35 (1992), 643--657.
  • T. Y. H. Wan and T. K. K. Au, Parabolic constant mean curvature spacelike surfaces, Proc. Amer. Math. Soc. 120 (1994), 559--564.
  • T. Weinstein, An introduction to Lorentz surfaces, de Gruyter Exp. Math. 22, Walter de Gruyter, Berlin, New York, 1996.