Tohoku Mathematical Journal

Class {$\rm VII\sb 0$} surfaces with {$b\sb 2$} curves

Georges Dloussky, Karl Oeljeklaus, and Matei Toma

Full-text: Open access


We give an affirmative answer to the following conjecture of Ma, Kato: Let $S$ be a compact complex surface in Kodaira's class $\rm {VII_{0}}$ which contains a strictly positive number of rational curves being exactly equal to the second Betti number of $S$. Then $S$ admits a global spherical shell.

Article information

Tohoku Math. J. (2), Volume 55, Number 2 (2003), 283-309.

First available in Project Euclid: 11 April 2005

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 32J15: Compact surfaces
Secondary: 32Q57: Classification theorems

Compact Complex Surface Kodaira Class VII Global Spherical Shell Kato Surface


Dloussky, Georges; Oeljeklaus, Karl; Toma, Matei. Class {$\rm VII\sb 0$} surfaces with {$b\sb 2$} curves. Tohoku Math. J. (2) 55 (2003), no. 2, 283--309. doi:10.2748/tmj/1113246942.

Export citation


  • F. A. Bogomolov, Classification of surfaces of class $\rm VII_0$ with $b\sb2=0$, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), 273--288.
  • G. Dloussky, Structure des surfaces de Kato, Mém. Soc. Math. Fr. $\rm No. 14$ (1984).
  • G. Dloussky, Une construction élémentaire des surfaces d'Inoue-Hirzebruch, Math. Ann. 280 (1988), 663--682.
  • G. Dloussky, Compact complex surfaces with Betti numbers $b_1=1$, $b_2>0$ and finite quotients, Contemp. Math. 288 (2001), 305--309.
  • G. Dloussky and K. Oeljeklaus, Vector fields and foliations on surfaces of class $\rm VII_0$, Ann. Inst. Fourier 49 (1999), 1503--1545.
  • G. Dloussky, K. Oeljeklaus and M. Toma, Surfaces de la classe $\rm VII_0$ admettant un champ de vecteurs, Comment. Math. Helv. 75 (2000), 255--270.
  • G. Dloussky, K. Oeljeklaus and M. Toma, Surfaces de la classe $\rm VII_0$ admettant un champ de vecteurs II, Comment. Math. Helv. 76 (2001), 640--664.
  • I. Enoki, Surfaces of class $\rm VII_0$ with curves, Tôhoku Math. J. 33 (1981), 453--492.
  • Ch. Favre, Classification of $2$-dimensional contracting rigid germs and Kato surfaces I, J. Math. Pures Appl. 79 (2000), 475--514.
  • J. Hausen, Zur Klassifikation glatter kompakter $\textit\textbf C\kern1pt^\star$-Flächen, Math. Ann. 301 (1995), 763--769.
  • M. Inoue, On surfaces of class $\rm VII_0$, Invent. Math. 24 (1974), 269--310.
  • Ma. Kato, Compact complex manifolds containing ``global spherical shells'', Proceedings of the Int. Symp. Alg. Geometry (Kyoto Univ., Kyoto, 1977), 45--84, Kinokuniya Book Store, Tokyo, 1978.
  • K. Kodaira, On the structure of compact complex analytic surfaces I, II, Amer. J. Math. 86 (1964), 751--798; 88 (1966), 682--721.
  • J. Li, S.-T. Yau and F. Zheng, On projectively flat Hermitian manifolds, Comm. Anal. Geom. 2 (1994), 103--109.
  • I. Nakamura, On surfaces of class $\rm VII_0$ with curves, Invent. Math. 78 (1984), 393--443.
  • I. Nakamura, On surfaces of class $\rm VII_0$ with curves II, Tohôku Math. J. 42 (1990), 475--516.
  • D. van Straten and J. Steenbrink, Extendability of holomorphic differential forms near isolated hypersurface singularities, Abh. Math. Sem. Univ. Hamburg 55 (1985), 97--110.
  • A. Teleman, Projectively flat surfaces and Bogomolov's theorem on class $\rm VII_0$ surfaces, Internat. J. Math. 5 (1994), 253--264.
  • D. Zaffran, Serre problem and Inoue-Hirzebruch surfaces, Math. Ann. 319 (2001), 395--420.