Tohoku Mathematical Journal
- Tohoku Math. J. (2)
- Volume 55, Number 2 (2003), 283-309.
Class {$\rm VII\sb 0$} surfaces with {$b\sb 2$} curves
Georges Dloussky, Karl Oeljeklaus, and Matei Toma
Abstract
We give an affirmative answer to the following conjecture of Ma, Kato: Let $S$ be a compact complex surface in Kodaira's class $\rm {VII_{0}}$ which contains a strictly positive number of rational curves being exactly equal to the second Betti number of $S$. Then $S$ admits a global spherical shell.
Article information
Source
Tohoku Math. J. (2), Volume 55, Number 2 (2003), 283-309.
Dates
First available in Project Euclid: 11 April 2005
Permanent link to this document
https://projecteuclid.org/euclid.tmj/1113246942
Digital Object Identifier
doi:10.2748/tmj/1113246942
Mathematical Reviews number (MathSciNet)
MR1979500
Zentralblatt MATH identifier
1034.32012
Subjects
Primary: 32J15: Compact surfaces
Secondary: 32Q57: Classification theorems
Keywords
Compact Complex Surface Kodaira Class VII Global Spherical Shell Kato Surface
Citation
Dloussky, Georges; Oeljeklaus, Karl; Toma, Matei. Class {$\rm VII\sb 0$} surfaces with {$b\sb 2$} curves. Tohoku Math. J. (2) 55 (2003), no. 2, 283--309. doi:10.2748/tmj/1113246942. https://projecteuclid.org/euclid.tmj/1113246942