Tsukuba Journal of Mathematics

The Lichnerowicz theorem on CR manifolds

Elisabetta Barletta

Full-text: Open access

Abstract

For any compact strictly pseudoconvex CR manifold $M$ endowed with a contact form $\theta$ we obtain the Bochner type formula $\frac{1}{2}\Delta_{b}(|\nabla^{H}f|^{2}) = |\pi_{H}\nabla^{2}f|^{2} + (\nabla ^{H}f)(\Delta_{b}f) + \rho(\nabla^{H}f, \nabla^{H}f) + 2Lf$ (involving the sublaplacian $\Delta_{b}$ and the pseudohermitian Ricci curvature $\rho$). When $M$ is compact of CR dimension $n$ and $\rho(X,X) + 2A(X,JX) \geq kG_{\theta}(X,X), X \in H(M)$, we derive the estimate $-\lambda \geq 2nk/(2n - 1)$ on each nonzero eigenvalue $\lambda$ of $\Delta_{b}$ satisfying $\mathrm{Eigen}(\Delta_{b}; \lambda) \cap \mathrm{Ker}(T) \neq (0)$ where $T$ is the characteristic direction of $d\theta$.

Article information

Source
Tsukuba J. Math., Volume 31, Number 1 (2007), 77-97.

Dates
First available in Project Euclid: 30 May 2017

Permanent link to this document
https://projecteuclid.org/euclid.tkbjm/1496165116

Digital Object Identifier
doi:10.21099/tkbjm/1496165116

Mathematical Reviews number (MathSciNet)
MR2337121

Zentralblatt MATH identifier
1138.32020

Citation

Barletta, Elisabetta. The Lichnerowicz theorem on CR manifolds. Tsukuba J. Math. 31 (2007), no. 1, 77--97. doi:10.21099/tkbjm/1496165116. https://projecteuclid.org/euclid.tkbjm/1496165116


Export citation