Tsukuba Journal of Mathematics

On a result of Flammenkamp-Luca concerning noncototient sequence

Aleksander Grytczuk and Barbara Medryk

Full-text: Open access

Abstract

Let $\varphi(n)$ be the Euler totient function of $n$. A positive integer $m$ is called a noncototient if the equation $n-\varphi(n)=m$ has no solution in positive integers $n$. The sequence $(2^{k}p)_{k=1}^{\infty}$ which is noncototient for some prime $p$ will be called as Sierpiński's sequence. In this paper we prove some interesting properties of the Sierpiński sequence given in the Theorem 1, 2, 3.

Article information

Source
Tsukuba J. Math., Volume 29, Number 2 (2005), 533-538.

Dates
First available in Project Euclid: 30 May 2017

Permanent link to this document
https://projecteuclid.org/euclid.tkbjm/1496164969

Digital Object Identifier
doi:10.21099/tkbjm/1496164969

Mathematical Reviews number (MathSciNet)
MR2177025

Zentralblatt MATH identifier
1090.11003

Citation

Grytczuk, Aleksander; Medryk, Barbara. On a result of Flammenkamp-Luca concerning noncototient sequence. Tsukuba J. Math. 29 (2005), no. 2, 533--538. doi:10.21099/tkbjm/1496164969. https://projecteuclid.org/euclid.tkbjm/1496164969


Export citation