Tsukuba Journal of Mathematics

On Hopf algebras of dimension $P^{3}$

Gastón Andrés García

Full-text: Open access

Abstract

We discuss some general results on finite-dimensional Hopf algebras over an algebraically closed field $k$ of characteristic zero and then apply them to Hopf algebras $H$ of dimension $p^{3}$ over $k$. There are 10 cases according to the group-like elements of $H$ and $H^{*}$. We show that in 8 of the 10 cases, it is possible to determine the structure of the Hopf algebra. We also give a partial classification of the quasitriangular Hopf algebras of dimension $p^{3}$ over $k$, after studying extensions of a group algebra of order $p$ by a Taft algebra of dimension $p^{2}$. In particular, we prove that every ribbon Hopf algebra of dimension $p^{3}$ over $k$ is either a group algebra or a Frobenius-Lusztig kernel. Finally, using some results from [1] and [4] on bounds for the dimension of the first term $H_{1}$ in the coradical filtration of $H$, we give the complete classification of the quasitriangular Hopf algebras of dimension 27.

Article information

Source
Tsukuba J. Math., Volume 29, Number 1 (2005), 259-284.

Dates
First available in Project Euclid: 30 May 2017

Permanent link to this document
https://projecteuclid.org/euclid.tkbjm/1496164903

Digital Object Identifier
doi:10.21099/tkbjm/1496164903

Mathematical Reviews number (MathSciNet)
MR2162840

Zentralblatt MATH identifier
1092.16022

Citation

García, Gastón Andrés. On Hopf algebras of dimension $P^{3}$. Tsukuba J. Math. 29 (2005), no. 1, 259--284. doi:10.21099/tkbjm/1496164903. https://projecteuclid.org/euclid.tkbjm/1496164903


Export citation