Tsukuba Journal of Mathematics

Reduction of locally conformal symplectic manifolds with examples of non-Kähler manifolds

Tomonori Noda

Full-text: Open access

Abstract

Let $(M, \Omega)$ be a locally conformal symplectic manifold. $\Omega$ is a non-degenerate 2-form on $M$ such that there is a closed 1-form $\omega$, called the Lee form, satisfing $ d\Omega=\omega\wedge\Omega$. In this paper we consider Marsden-Weinstein reduction theorem which induces Jacobi-Liouville theorem as a special case. For locally conformal Kähler manifolds, this reduction theorem gives a construction of non-Kähler manifolds in general dimension.

Article information

Source
Tsukuba J. Math., Volume 28, Number 1 (2004), 127-136.

Dates
First available in Project Euclid: 30 May 2017

Permanent link to this document
https://projecteuclid.org/euclid.tkbjm/1496164717

Digital Object Identifier
doi:10.21099/tkbjm/1496164717

Mathematical Reviews number (MathSciNet)
MR2082225

Zentralblatt MATH identifier
1077.53067

Citation

Noda, Tomonori. Reduction of locally conformal symplectic manifolds with examples of non-Kähler manifolds. Tsukuba J. Math. 28 (2004), no. 1, 127--136. doi:10.21099/tkbjm/1496164717. https://projecteuclid.org/euclid.tkbjm/1496164717


Export citation