Tsukuba Journal of Mathematics

On the common divisor of discriminants of integers

Satomi Oka

Full-text: Open access


Let $F$ be an algebraic number field of a finite degree, and let $K$ be an extension of $F$ of a finite degree. Denote by $\delta(K/F)$ the greatest common divisor of the discriminants of integers of $K$ with respect to $K/F$. Then, $\delta(K/F)$ is divisible by the discriminant $d(K/F)$ of $K/F$. Let $\mathfrak{p}$ be an arbitrary prime ideal of $F$, let $\mathfrak{p}=\mathfrak{q}_{1}^{e_1} \mathfrak{q}_{2}^{e_2}\cdots \mathfrak{q}_{g}^{e_g}$ be the decomposition of $\mathfrak{p}$ in $K$ into primes, and let $f_i$ be the degree of $\mathfrak{q}_i$. The set of indices $\{1, 2, \ldots, g\}$ is then divided into the union of maximal subsets $I$ such that $f_i = f_j$ whenever $i$ and $j$ belong to a common $I$. We write $f_I$ instead of $f_i$ for $i \in I$, and denote by $g_I$ the number of elements in $I$. Put on the other hand $c(I)= \sum_{d|f_{I}}\mu(f_{I}/d)N\mathfrak{p}^{d}$, where $\mu$ is the Möbius function. Then, $\mathfrak{p}$ divides $\delta(K/F)d(K/F)^{-1}$ if and only if there exists an $I$ such that $c(I) \lt f_{I}g_{I}$.

Article information

Tsukuba J. Math., Volume 26, Number 1 (2002), 69-78.

First available in Project Euclid: 30 May 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Oka, Satomi. On the common divisor of discriminants of integers. Tsukuba J. Math. 26 (2002), no. 1, 69--78. doi:10.21099/tkbjm/1496164382. https://projecteuclid.org/euclid.tkbjm/1496164382

Export citation