## Tsukuba Journal of Mathematics

- Tsukuba J. Math.
- Volume 19, Number 2 (1995), 481-496.

### Global existence for a class of quasilinear hyperbolic-parabolic equations

#### Abstract

We prove that classical solutions of the dissipative wave equation $\epsilon u_{tt}+u_{t}-u_{xx}-(f(u_{x}))_{x}=0$ are globally defined in time, regardless of the size of the initial data, if $\epsilon$ is sufficiently small.

#### Article information

**Source**

Tsukuba J. Math., Volume 19, Number 2 (1995), 481-496.

**Dates**

First available in Project Euclid: 30 May 2017

**Permanent link to this document**

https://projecteuclid.org/euclid.tkbjm/1496162882

**Digital Object Identifier**

doi:10.21099/tkbjm/1496162882

**Mathematical Reviews number (MathSciNet)**

MR1366648

**Zentralblatt MATH identifier**

0856.35083

#### Citation

Milani, Albert. Global existence for a class of quasilinear hyperbolic-parabolic equations. Tsukuba J. Math. 19 (1995), no. 2, 481--496. doi:10.21099/tkbjm/1496162882. https://projecteuclid.org/euclid.tkbjm/1496162882