Tsukuba Journal of Mathematics

On the Cartier duality of certain finite group schemes of type $(p^n, p^n)$

Nobuhiro Aki and Michio Amano

Full-text: Open access

Abstract

In this paper we show that the finite subgroup scheme Spec $A[X, Y]/(X^{p^l}, Y^{p^l})$ of $\mathscr{E}^{\lambda, \mu, D} \in {\rm Ext}^1(\mathscr{G}^{(\lambda)}, \mathscr{G}^{(\mu)})$ is a Cartier dual of a certain finite subgroup scheme of the fiber product $W_{l,A} \times_{{\rm Spec} A} W_{l,A}$ of Witt vectors of length $l$ in positive characteristic $p$. After this, we treat the kernel of the type $F^2 + [a]F + [b]: W_{l,A} \to W_{l,A}$, where $F$ is the Frobenius endomorphism and $[a]$ is the Teichmüller lifting of $a \in A$, respectively.

Article information

Source
Tsukuba J. Math., Volume 34, Number 1 (2010), 31-46.

Dates
First available in Project Euclid: 8 September 2010

Permanent link to this document
https://projecteuclid.org/euclid.tkbjm/1283967406

Digital Object Identifier
doi:10.21099/tkbjm/1283967406

Mathematical Reviews number (MathSciNet)
MR2723722

Zentralblatt MATH identifier
1218.14037

Citation

Aki, Nobuhiro; Amano, Michio. On the Cartier duality of certain finite group schemes of type $(p^n, p^n)$. Tsukuba J. Math. 34 (2010), no. 1, 31--46. doi:10.21099/tkbjm/1283967406. https://projecteuclid.org/euclid.tkbjm/1283967406


Export citation