Tsukuba Journal of Mathematics

The best constant of Sobolev inequality corresponding to a bending problem of a beam on an interval

Yoshinori Kametaka, Atsushi Nagai, Kazuo Takemura, Kohtaro Watanabe, and Hiroyuki Yamagishi

Full-text: Open access

Abstract

Green function of 2-point simple-type self-adjoint boundary value problem for 4-th order linear ordinary differential equation, which represents bending of a beam with the boundary condition as clamped, Dirichlet, Neumann and free. The construction of Green function needs the symmetric orthogonalization method in some cases. Green function is the reproducing kernel for suitable set of Hilbert space and inner product. As an application, the best constants of the corresponding Sobolev inequalities are expressed as the maximum of the diagonal values of Green function.

Article information

Source
Tsukuba J. Math., Volume 33, Number 2 (2009), 253-280.

Dates
First available in Project Euclid: 26 February 2010

Permanent link to this document
https://projecteuclid.org/euclid.tkbjm/1267209420

Digital Object Identifier
doi:10.21099/tkbjm/1267209420

Mathematical Reviews number (MathSciNet)
MR2605855

Zentralblatt MATH identifier
1209.34016

Subjects
Primary: 34B27: Green functions
Secondary: 46E35: Sobolev spaces and other spaces of "smooth" functions, embedding theorems, trace theorems 41A44: Best constants

Keywords
Green function Sobolev inequality best constant reproducing kernel symmetric orthogonalization method

Citation

Takemura, Kazuo; Yamagishi, Hiroyuki; Kametaka, Yoshinori; Watanabe, Kohtaro; Nagai, Atsushi. The best constant of Sobolev inequality corresponding to a bending problem of a beam on an interval. Tsukuba J. Math. 33 (2009), no. 2, 253--280. doi:10.21099/tkbjm/1267209420. https://projecteuclid.org/euclid.tkbjm/1267209420


Export citation