Tsukuba Journal of Mathematics

Circular billiards and parallel axiom in convex billiards

Nobuhiro Innami and Shinetsu Tamura

Full-text: Open access

Abstract

Circles will be characterized by some properties of billiard ball trajectories. The theory of parallels and the parallel axiom play important roles in the geometry of the configuration space. Those characterizations are concerned with Bialy's theorem which is a partial answer to Birkhoff's conjecture.

Article information

Source
Tsukuba J. Math., Volume 33, Number 1 (2009), 147-160.

Dates
First available in Project Euclid: 1 September 2009

Permanent link to this document
https://projecteuclid.org/euclid.tkbjm/1251833211

Digital Object Identifier
doi:10.21099/tkbjm/1251833211

Mathematical Reviews number (MathSciNet)
MR2553842

Zentralblatt MATH identifier
1181.37054

Citation

Tamura, Shinetsu; Innami, Nobuhiro. Circular billiards and parallel axiom in convex billiards. Tsukuba J. Math. 33 (2009), no. 1, 147--160. doi:10.21099/tkbjm/1251833211. https://projecteuclid.org/euclid.tkbjm/1251833211


Export citation