Tsukuba Journal of Mathematics

Subcomplexes of box complexes of graphs

Akira Kamibeppu

Full-text: Open access


The box complex ${\sf B}(G)$ of a graph $G$ is a simplicial $\mathbf{Z}_2$-complex defined by J. Matoušek and G.M. Ziegler in \cite{MZ04}. They proved that $\chi (G)\geq \text{ind}_{\mathbf{Z}_2}(\| {\sf B}(G)\| )+2$, where $\chi (G)$ is the chromatic number of $G$ and $\text{ind}_{\mathbf{Z}_2}(\| {\sf B}(G)\| )$ is the $\mathbf{Z}_2$-index of ${\sf B}(G)$. In this paper, to study topology of box complexes, for the union $G\cup H$ of two graphs $G$ and $H$, we compare ${\sf B}(G\cup H)$ with its subcomplex ${\sf B}(G)\cup {\sf B}(H)$. We give a sufficient condition on $G$ and $H$ so that ${\sf B}(G\cup H)={\sf B}(G)\cup {\sf B}(H)$ and ${\sf B}(G\cap H)={\sf B}(G)\cap {\sf B}(H)$ hold. Moreover, under that condition, we show $$\rm{max} \{\chi (G), \chi (H)\}\leq \chi (G\cup H)\leq \max \{\chi (G)+l_H, \chi (H)\},$$

where $l_H$ is the number defined in Definition 3.8. Also we prove $$\rm{ind}_{\mathbf{Z}_2}(\| {\sf B}(G\cup H)\| )=\max \{\,\rm{ind}_{\mathbf{Z}_2}(\| {\sf B}(G)\| ),\, \rm{ind}_{\mathbf{Z}_2}(\| {\sf B}(H)\| )\,\}$$

if $\max \{\,\rm{ind}_{\mathbf{Z}_2}(\| {\sf B}(G)\| ),\,\rm{ind}_{\mathbf{Z}_2}(\| {\sf B}(H)\| )\,\}\geq 1$.

The complex $\mathsf{B}(G)$ of a graph $G$ contains a 1-dimensional free $\mathbf{Z}_2$-subcomplex $\overline{G}$ of ${\sf B}(G)$, defined in [2]. As a supplement to [2], we show that for a connected graph $G$, $\mathsf {B}(G)$ is disconnected if and only if $\overline{G}$ is disconnected if and only if $G$ contains no cycles of odd length, or equivalently, $G$ is bipartite.

Article information

Tsukuba J. Math., Volume 33, Number 1 (2009), 79-94.

First available in Project Euclid: 1 September 2009

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Kamibeppu, Akira. Subcomplexes of box complexes of graphs. Tsukuba J. Math. 33 (2009), no. 1, 79--94. doi:10.21099/tkbjm/1251833208. https://projecteuclid.org/euclid.tkbjm/1251833208

Export citation