Tokyo Journal of Mathematics

Genus 3 Curves Whose Jacobians Have Endomorphisms by $\mathbb{Q}(\zeta _7 +\bar{\zeta}_7 )$, II

Jerome William HOFFMAN, Dun LIANG, Zhibin LIANG, Ryotaro OKAZAKI, Yukiko SAKAI, and Haohao WANG

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In this work we consider constructions of genus three curves $Y$ such that $\text{End}(\text{Jac} (Y))\otimes \mathbb{Q}$ contains the totally real cubic number field $\mathbb{Q}(\zeta _7 +\bar{\zeta}_7 )$. We construct explicit three-dimensional families whose general member is a nonhyperelliptic genus 3 curve with this property. The case when $Y$ is hyperelliptic was studied in \textsc{J. W. Hoffman, H. Wang}, $7$-gons and genus $3$ hyperelliptic curves, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales., Serie A. Matemàticas \textbf{107} (2013), 35--52, and some nonhyperelliptic curves were constructed in \textsc{J. W. Hoffman, Z. Liang, Y. Sakai, H. Wang}, Genus $3$ curves whose Jacobians have endomorphisms by $\mathbb{Q}(\zeta _7 +\bar{\zeta}_7 )$, J. Symb. Comp. \textbf{74} (2016), 561--577.

Article information

Source
Tokyo J. Math., Volume 42, Number 1 (2019), 185-218.

Dates
First available in Project Euclid: 18 July 2019

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1563436918

Mathematical Reviews number (MathSciNet)
MR3982054

Zentralblatt MATH identifier
07114905

Subjects
Primary: 14H10: Families, moduli (algebraic)
Secondary: 14H40: Jacobians, Prym varieties [See also 32G20] 11G15: Complex multiplication and moduli of abelian varieties [See also 14K22] 14H45: Special curves and curves of low genus 14Q05: Curves

Citation

HOFFMAN, Jerome William; LIANG, Dun; LIANG, Zhibin; OKAZAKI, Ryotaro; SAKAI, Yukiko; WANG, Haohao. Genus 3 Curves Whose Jacobians Have Endomorphisms by $\mathbb{Q}(\zeta _7 +\bar{\zeta}_7 )$, II. Tokyo J. Math. 42 (2019), no. 1, 185--218. https://projecteuclid.org/euclid.tjm/1563436918


Export citation

References

  • \BibAuthorsL. A. Borisov and P. E. Gunnells, On Hilbert modular threefolds of discriminant 49, Selecta Math. (N.S.) 19 (2013), 923–947.
  • \BibAuthorsW. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235–265.
  • \BibAuthorsI. Boyer, Real multiplication curves by subfields of cyclotomic fields, arXiv:1310.2582.
  • \BibAuthorsA. Chiodo, D. Eisenbud, G. Farkas and F. O. Schreyer, Syzygies of torsion bundles and the geometry of the level $\ell$ modular variety over $M_g$, Inventiones Mathematicae 194 (2013), 73–118.
  • \BibAuthorsA. Clebsch, Zur Theorie der binären Formen sechster Ordnung und zur Dreitheilung der hyperelliptischen Functionen, Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen (1869), 17–76.
  • \BibAuthorsH. Cohen, Advanced Topics in Computational Number Theory, GTM 193, Springer, 2000.
  • \BibAuthorsN. D. Elkies, Shimura curve computations, “Algorithmic Number Theory: 3rd International Symposium, ANTS-III; Portland, OR, 6/98: Proceedings”, J. P. Buhler, ed.; Lecture Notes in Computer Science, Vol.1423, pages 1–47.
  • \BibAuthorsN. D. Elkies, Shimura curves for level-$3$ subgroups of the $(2,3,7)$ triangle group, and some other examples, In: Hess F., Pauli S., Pohst M. (eds.) Algorithmic Number Theory, 302–316. ANTS 2006. Lecture Notes in Computer Science, vol. 4076. Springer, Berlin, Heidelberg.
  • \BibAuthorsN. D. Elkies, Shimura curve computations via $K3$ surfaces of Néron-Severi rank at least $19$, Algorithmic number theory, 196–211, Lecture Notes in Comput. Sci., 5011, Springer, Berlin, 2008.
  • \BibAuthorsN. D. Elkies and A. Kumar, K3 surfaces and equations for Hilbert modular surfaces. Algebra Number Theory 8 (2014), no. 10, 2297–2411.
  • \BibAuthorsJ. Ellenberg, Endomorphism algebras of Jacobians, Advances in Mathematics, Vol. 162, No. 2 (2001), 243–271.
  • \BibAuthorsG. van der Geer, Hilbert modular surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete 16, Springer-Verlag, Berlin, 1988.
  • \BibAuthorsE. Z. Goren, Lectures on Hilbert modular varieties and modular forms, With the assistance of Marc-Hubert Nicole, CIRM Monograph Series, 14, Amer. Math. Soc. 2002.
  • \BibAuthorsP. A. Griffiths, On the periods of certain rational integrals. I, II, Ann. of Math. (2) 90 (1969), 460–495; ibid. (2) 90, 1969, 496–541.
  • \BibAuthorsA. Grothendieck and J. A. Dieudonné, Éléments de Géometrie Algèbrique, II, Publ. Math. IHES 8 (1961).
  • \BibAuthorsA. Grothendieck and J. A. Dieudonné, Éléments de Géometrie Algèbrique, IV, Publ. Math. IHES 20 (1964), 24 (1965), 28 (1966), 32 (1967).
  • \BibAuthorsD. Gruenewald, Explicit algorithms for Humbert surfaces, thesis, U. Sydney (2009), available at http://echidna.maths.usyd.edu.au/~davidg/.
  • \BibAuthorsR. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52, Springer, 1977.
  • \BibAuthorsK. Hashimoto and N. Murabayashi, Shimura curves as intersections of Humbert surfaces and defining equations of QM-curves of genus two, Tohoku Math. J. 47 (1995), no. 2, 271–296.
  • \BibAuthorsJ. W. Hoffman and H. He, Picard groups of Siegel modular $3$-folds and $\theta$-liftings, Journal of Lie Theory 3 (2012), 769–801.
  • \BibAuthorsJ. W. Hoffman and H. Wang, $7$-gons and genus $3$ hyperelliptic curves, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales., Serie A. Matemàticas 107 (2013), 35–52.
  • \BibAuthorsJ. W. Hoffman, Z. Liang, Y. Sakai and H. Wang, Genus $3$ curves whose Jacobians have endomorphisms by $\QQ (\zeta _7 +\bar{\zeta}_7 )$, J. Symb. Comp. 74 (2016), 561–577.
  • \BibAuthorsJun-ichi Igusa, Arithmetic variety of moduli for genus two, Ann. of Math. 72 (1960), 612–649.
  • \BibAuthorsK. Lauter, M. Naehrig and T. Yang, Hilbert theta series and invariants of genus 2 curves, J. Number Theory 161 (2016), 146–174.
  • \BibAuthorsJ. F. Mestre, Courbes hyperelliptiques à multiplications réelles, C. R. Acad. Sci. Paris, Serie. I Math. 307 (1988), 721–724.
  • \BibAuthorsJ. F. Mestre, Courbes hyperelliptiques à multiplications réelles, Progr. Math. 89 (1991), 193–208.
  • \BibAuthorsD. Mumford, Abelian Varieties, Tata Institute of Fundamental Research Studies in Mathematics, No. 5, Published for the Tata Institute of Fundamental Research, Bombay; Oxford University Press, London 1970.
  • \BibAuthorsJ. S. Milne, Introduction to Shimura varieties, Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc. 4, 265–378, Amer. Math. Soc., Providence, RI, 2005.
  • \BibAuthorsJ. S. Milne, Shimura varieties and moduli. Handbook of moduli, Vol. II, 467–548, Adv. Lect. Math. (ALM) 25, Int. Press, Somerville, MA, 2013.
  • \BibAuthorsThe PARI Group, PARI/GP, version 2.5.0, 2011, Bordeaux, available from http://pari.math.u-bordeaux.fr/
  • \BibAuthorsB. Runge, Endomorphism rings of abelian surfaces and projective models of their moduli spaces, Tohoku Math. J. 51 (1999), no. 3, 283–303.
  • \BibAuthorsSAGE Mathematics Software, Version 4.6, http://www.sagemath.org/
  • \BibAuthorsY. Sakai, Construction of genus two curves with real multiplication by Poncelet's theorem, (2010) dissertation, Waseda University.
  • \BibAuthorsF. Schreyer, Syzygies of canonical curves and special linear series, Math. Ann. 275 (1986), no. 1, 105–137.
  • \BibAuthorsF. Schreyer, A standard basis approach to syzygies of canonical curves, J. Reine Angew. Math. 421 (1991), 83–123.
  • \BibAuthorsI. Shimada, A construction of algebraic curves whose Jacobians have non-trivial endomorphisms, Comment. Math. Univ. St. Paul 43 (1) (1994), 25–34.
  • \BibAuthorsG. Shimura, On analytic families of polarized abelian varieties and automorphic functions, Ann. of Math. (2) 78 (1963), 149–192.
  • \BibAuthorsG. Shimura, Abelian varieties with complex multiplication and modular functions, Princeton Mathematical Series, 46, Princeton University Press, Princeton, NJ, 1998.
  • \BibAuthorsJ. Voight, Shimura curves of genus at most two, Math. Comp. 78 (2009), no. 266, 1155–1172.
  • \BibAuthorsC. Voisin, Hodge Theory and Complex Algebraic Geometry I, II, Cambridge Studies in Advanced Mathematics, vol. 76, 77, 2007.
  • \BibAuthorsWolfram Research, Inc., Mathematica, Version 7.0, Champaign, IL (2008).
  • \BibAuthorsO. Zariski, The concept of a simple point of an abstract algebraic variety. Trans. Amer. Math. Soc. 62 (1947), 1–52.