Tokyo Journal of Mathematics

Common Fixed Points for Nonlinear $(\psi ,\varphi)_{s}$-weakly $C$-contractive Mappings in Partially Ordered $b$-metric Spaces

Mina DINARVAND and Jamal REZAEI ROSHAN

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In this paper, we introduce the concept of $(\psi ,\varphi)_{s}$-weakly $C$-contractive mappings in the setup of partially ordered $b$-metric spaces and investigate some fixed point and common fixed point results for such mappings. Our main results generalize several well-known comparable results in the recent literature. Furthermore, we furnish some suitable examples and an applications of a common solution for a system of integral equations to illustrate the effectiveness and usability of our obtained results.

Article information

Source
Tokyo J. Math., Volume 40, Number 1 (2017), 97-121.

Dates
First available in Project Euclid: 8 August 2017

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1502179218

Digital Object Identifier
doi:10.3836/tjm/1502179218

Mathematical Reviews number (MathSciNet)
MR3689981

Zentralblatt MATH identifier
06787090

Subjects
Primary: 47H10: Fixed-point theorems [See also 37C25, 54H25, 55M20, 58C30]
Secondary: 54H25: Fixed-point and coincidence theorems [See also 47H10, 55M20] 54E50: Complete metric spaces

Citation

REZAEI ROSHAN, Jamal; DINARVAND, Mina. Common Fixed Points for Nonlinear $(\psi ,\varphi)_{s}$-weakly $C$-contractive Mappings in Partially Ordered $b$-metric Spaces. Tokyo J. Math. 40 (2017), no. 1, 97--121. doi:10.3836/tjm/1502179218. https://projecteuclid.org/euclid.tjm/1502179218


Export citation

References

  • M. Abbas and D. Dorić, Common fixed point theorem for four mappings satisfying generalized weak contractive condition, Filomat 24(2) (2010), 1–10.
  • M. Abbas, T. Nazir and S. Radenović, Common fixed points of four maps in partially ordered metric spaces, Appl. Math. Lett. 24 (2011), 1520–1526.
  • R. P. Agarwal, M. A. El-Gebeily and D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal. 87(1) (2008), 109–116.
  • A. Aghajani, M. Abbas and J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered $b$-metric spaces, Math. Slovaca 64 (2014), 941–960.
  • A. Aghajani, S. Radenović and J. R. Roshan, Common fixed point results for four mappings satisfying almost generalized $(S,T)$-contractive condition in partially ordered metric spaces, Appl. Math. Comput. 218 (2012), 5665–5670.
  • I. Altan, B. Damjanović and D. Dorić, Fixed point and common fixed point theorems on ordered cone metric spaces, Appl. Math. Lett. 23 (2010), 310–316.
  • H. Aydi, On common fixed point theorems for $(\psi,\varphi )$-generalized $f$-weakly contractive mappings, Miskolc Math. Notes 14 (2013), 19–30.
  • H. Aydi, M. Bota, E. Karapinar and S. Mitrović, A fixed point theorem for set-valued quasi-contractions in $b$-metric spaces, Fixed Point Theory Appl. (2012), 2012:88..
  • I. A. Bakhtin, The contraction principle in quasimetric spaces, Func. An., U\'lyanowsk, Gos. Fed. Ins. 30 (1989), 26–37 (in Russian).
  • S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux equations itegrales, Fund. Math. 3 (1922), 133–181.
  • M. Boriceanu, Fixed point theory for multivalued generalized contraction on a set with two $b$-metrics, Stud. Univ., Babeş-Bolyai, Math. LIV(3) (2009), 3–14.
  • M. Boriceanu, Strict fixed point theorems for multivalued operators in $b$-metric spaces, Int. J. Mod. Math. 4(3) (2009), 285–301.
  • M. Boriceanu, M. Bota and A. Petrusel, Multivalued fractals in $b$-metric spaces, Cent. Eur. J. Math. 8(2) (2010), 367–377.
  • M. Bota, A. Molnar and C. Varga, On Ekeland's variational principle in $b$-metric spaces, Fixed Point Theory 12(2) (2011), 21–28.
  • S. K. Chatterjea, Fixed point theorems, C. R. Acad. Bulgare Sci. 25 (1972), 727–730.
  • B. S. Choudhury, Unique fixed point theorem for weak $ C $-contractive mappings, Kathmandu Univ. J. Scl. Eng. Technol. 5(1) (2009), 6–13.
  • L. Ćirić, A generalization of Banach's contraction principle, Proc. Am. Math. Soc. 45 (1974), 265–273.
  • L. Ćirić, On contractive type mappings, Math. Balk. 1 (1971), 52–57.
  • S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostrav. 1 (1993), 5–11.
  • S. Czerwik, Nonlinear set-valued contraction mappings in $b$-metric spaces, Atti Semin. Mat. Fis. Univ. Modena 46 (1998), 263–276.
  • C. Di Bari and P. Vetro, $\phi $-Paris and common fixed points in cone metric spaces, Rend. Circ. Mat. Palermo 57 (2008), 279–285.
  • P. N. Dutta and B. S. Choudhury, A generalization of contraction principle in metric spaces, Fixed Point Theory Appl. (2008), Article ID 406368, 8 pages.
  • J. Esmaily, S. M. Vaezpour and B. E. Rhoades, Coincidence point theorem for generalized weakly contractions in ordered metric spaces, Appl. Math. Comput. 219 (2012), 1536–1548.
  • M. Jovanović, Z. Kadelburg and S. Radenović, Common fixed point results in metric-type spaces, Fixed Point Theory Appl. (2010), Article ID 978121.
  • J. Harjani, B. López and K. Sadarangani, Fixed point theorems for weakly $C$-contractive mappings in ordered metric spaces, Comput. Math. Appl. 61 (2011), 790–796.
  • J. Harjani and K. Sadarangani, Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Anal. 72(3–4) (2010), 1188–1197.
  • N. Hussain, D. Dorić, Z. Kadelburg and S. Radenović, Suzuki-type fixed point results in metric type spaces, Fixed Point Theory Appl. (2012), 2012:126.
  • N. Hussain, V. Parvaneh, J. R. Roshan and Z. Kadelburg, Fixed points of cyclic weakly $(\psi ,\varphi ,L,A,B)$-contractive mappings in ordered $b$-metric spaces with applications, Fixed Point Theory Appl. (2013), 2013:256, 18 pages.
  • N. Hussain and M. A. Taoudi, Krasnosel'skii-type fixed point theorems with applications to Volterra integral equations, Fixed Point Theory Appl. (2013), 2013:196.
  • N. Hussain, R. Saadati and R. P. Agarwal, On the topology and wt-distance on metric type spaces, Fixed Point Theory Appl. (2014), 2014:88.
  • N. Hussain and M. H. Shah, KKM mappings in cone $b$-metric spaces, Comput. Math. Appl 62 (2011), 1677–1684.
  • M. A. Khamsi and N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal. 73(9) (2010), 3123–3129.
  • M. A. Khamsi, Remarks on cone metric spaces and fixed point theorems of contractive mappings, Fixed Point Theory Appl. (2010), Article ID 315398, 7 pages.
  • M. S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc. 30 (1984), 1–9.
  • H. K. Nashine and B. Samet, Fixed point results for mappings satisfying $(\psi ,\varphi )$-weakly contractive condition in partially ordered metric spaces, Nonlinear Anal. 74 (2011), 2201–2209.
  • J. J. Nieto and R. Rod\'riguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), 223–239.
  • M. O. Olatinwo, Some results on multi-valued weakly Jungck mappings in $b$-metric space, Cent. Eur. J. Math. 6(4) (2008), 610–621.
  • M. Pacurar, Sequences of almost contractions and fixed points in $b$-metric spaces, An. Univ. Vest. Timis. Ser. Mat.-Inform. XLVIII(3) (2010), 125–137.
  • S. Radenovicć and Z. Kadelburg, Generalized weak contractions in partially ordered metric spaces, Comput. Math. Appl. 60 (2010), 1776–1783.
  • A.C.M. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to metrix equations, Proc. Amer. Math. Soc. 132(5) (2004), 1435–1443.
  • B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001), 2683–2693.
  • J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei and W. Shatanawi, Common fixed points of almost generalized $(\psi ,\varphi)_{s}$-contractive mappings in ordered $b$-metric spaces, Fixed Point Theory Appl. (2013), 2013:159, 23 pages.
  • J. R. Roshan, V. Parvaneh and I. Altun, Some coincidence point results in ordered $b$-metric spaces and applications in a system of integral equations, Appl. Math. Comput. 226 (2014), 725–737.
  • J. R. Roshan, V. Parvaneh, S. Radenović and M. Rajović, Some coincidence point results for generalized $(\psi ,\varphi )$-weakly contractions in ordered $b$-metric spaces, Fixed Point Theory Appl. (2015), 2015:68, 21 pages.
  • W. Shatanawi, Fixed point theorems for nonlinea weakly $C$-contractive mappings in metric spaces, Math. Comput. Model. 54 (2011), 2816–2826.
  • W. Shatanawi and B. Samet, On $(\psi ,\varphi )$-weakly contractive condition in partially ordered metric spaces, Comput. Math. Appl. 62 (2011), 3204–3214.
  • S. L. Singh and B. Prasad, Some coincidence theorems and stability of iterative procedures, Comput. Math. Appl. 55 (2008), 2512–2520.