## Tokyo Journal of Mathematics

- Tokyo J. Math.
- Volume 39, Number 2 (2016), 373-387.

### Non-Hopf Hypersurfaces in 2-dimensional Complex Space Forms

#### Abstract

In this paper we give a geometric characterization of non-Hopf hypersurfaces in the complex space form $M^2(c)$ under a condition on the shape operator. We also classify pseudo-parallel real hypersurfaces of $M^2(c)$.

#### Article information

**Source**

Tokyo J. Math., Volume 39, Number 2 (2016), 373-387.

**Dates**

First available in Project Euclid: 20 January 2017

**Permanent link to this document**

https://projecteuclid.org/euclid.tjm/1484903129

**Digital Object Identifier**

doi:10.3836/tjm/1484903129

**Mathematical Reviews number (MathSciNet)**

MR3599499

**Zentralblatt MATH identifier**

1361.53045

**Subjects**

Primary: 53C40: Global submanifolds [See also 53B25]

Secondary: 53C55: Hermitian and Kählerian manifolds [See also 32Cxx] 53C25: Special Riemannian manifolds (Einstein, Sasakian, etc.)

#### Citation

KON, Mayuko. Non-Hopf Hypersurfaces in 2-dimensional Complex Space Forms. Tokyo J. Math. 39 (2016), no. 2, 373--387. doi:10.3836/tjm/1484903129. https://projecteuclid.org/euclid.tjm/1484903129