Tokyo Journal of Mathematics

A Class Number Problem for the Cyclotomic $\mathbb{Z}_2$-extension of $\mathbb{Q}(\sqrt{5})$

Takuya AOKI

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Let $K_n$ be the $n$-th layer of the cyclotomic $\mathbb{Z}_2$-extension of $\mathbb{Q}(\sqrt{5})$ and $h_n$ the class number of $K_n$. We prove that, if $\ell$ is a prime number less than $6\cdot10^4$, then $\ell$ does not divide $h_n$ for any non-negative integer $n$.

Article information

Tokyo J. Math., Volume 39, Number 1 (2016), 69-81.

First available in Project Euclid: 30 March 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


AOKI, Takuya. A Class Number Problem for the Cyclotomic $\mathbb{Z}_2$-extension of $\mathbb{Q}(\sqrt{5})$. Tokyo J. Math. 39 (2016), no. 1, 69--81. doi:10.3836/tjm/1459367258.

Export citation


  • M. Aoki and T. Fukuda, An Algorithm for Computing $p$-Class Groups of Abelian Number Fields, Algorithmic number theory, Lecture Notes in Comput. Sci., 4076, Springer, Berlin, 2006, 56–71.
  • G. Gras, Classes d'idéaux des corps abéliens et nombres de Bernoulli généralisés, Ann. Inst. Fourier 27-1 (1977), 1–66.
  • K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257–258.
  • T. Fukuda and K. Komatsu, Weber's class number problem in the cyclotomic $\mathbb{Z}_2$-extension of $\mathbb{Q}$, Experiment. Math. 18(2) (2009), 213–222.
  • T. Fukuda and K. Komatsu, Weber's class number problem in the cyclotomic $\mathbb{Z}_2$-extension of $\mathbb{Q}$, III, International Journal of Number Theory Vol. 7, No. 6 (2011), 1627–1635.
  • B. Mazur and A. Wiles, Class fields of abelian extension of $\mathbb{Q}$, Invent. Math. 76 (1984), 179–330.
  • L. C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, 83. Springer-Verlag, New York, 1997.
  • H. Weber, Theorie der Abel'schen Zahlkörper, Acta Math. 8 (1886), 193–263.