Tokyo Journal of Mathematics

On Functional Relations for Witten Multiple Zeta-functions

Soichi IKEDA and Kaneaki MATSUOKA

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In this paper we discuss functional relations for the multi-variable version of Witten zeta-functions associated with the Lie algebra $\mathfrak{sl}(r)$ ($r=3, 4, 5$).

Article information

Source
Tokyo J. Math., Volume 39, Number 1 (2016), 17-38.

Dates
First available in Project Euclid: 30 March 2016

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1459367257

Digital Object Identifier
doi:10.3836/tjm/1459367257

Mathematical Reviews number (MathSciNet)
MR3543129

Zentralblatt MATH identifier
06643261

Subjects
Primary: 11M32: Multiple Dirichlet series and zeta functions and multizeta values

Citation

IKEDA, Soichi; MATSUOKA, Kaneaki. On Functional Relations for Witten Multiple Zeta-functions. Tokyo J. Math. 39 (2016), no. 1, 17--38. doi:10.3836/tjm/1459367257. https://projecteuclid.org/euclid.tjm/1459367257


Export citation

References

  • D. M. Bradley, T. Cai and X. Zhou, Depth reduction of a class of Witten zeta functions, Electron. J. Comb. 16 (2009), N 27.
  • M. E. Hoffman, Multiple harmonic series, Pacific J. Math. 152 (1992), 275–290.
  • Y. Komori, K. Matsumoto and H. Tsumura, Functional relations for zeta-functions of root systems. in “Number Theory: Dreaming in Dreams”, Proc. 5th China-Japan Seminar, T. Aoki et al. (eds.), World Scientific, 2010, pp.135–183.
  • Y. Komori, K. Matsumoto and H. Tsumura, On Witten multiple zeta-functions associated with semisimple Lie algebras II, J. Math. Soc. Japan 62 (2010), 355–394.
  • K. Matsumoto and H. Tsumura, On Witten multiple zeta-functions associated with semisimple Lie algebras I, Ann. Inst. Fourier 56 (2006), 1457–1504.
  • T. Nakamura, A functional relation for the Tornheim double zeta function, Acta Arith. 125 (2006), 257–263.
  • T. Nakamura, Double Lerch value relations and functional relations for Witten zeta functions, Tokyo J. Math. 31 (2008), 551–574.
  • L. Tornheim, Harmonic double series, Amer. J. Math. 72 (1950), 303–314.
  • H. Tsumura, On some combinatorial relations for Tornheim's double series, Acta Arith. 105 (2002), 239–252.
  • H. Tsumura, On functional relations between the Mordell-Tornheim double zeta functions and the Riemann zeta function, Math. Proc. Cambridge Philos. Soc. 142 (2007), 395–405.
  • E. Witten, On quantum gauge theories in two dimensions, Comm. Math. Phys. 141 (1991), 153–259.
  • D. Zagier, Values of zeta functions and their applications, in Proc. First Congress of Math., Paris, vol. II, Progress in Math. 120 (1994), 497–512.