Tokyo Journal of Mathematics

A Study of Behavior of the Sequence of Norm of Primitives of Functions in Orlicz Spaces Depending on Their Spectrum

Ha Huy BANG and Vu Nhat HUY

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In this paper we characterize behavior of the sequence of norm of primitives of functions in Orlicz spaces by its spectrum (the support of its Fourier transform).

Article information

Source
Tokyo J. of Math. Volume 38, Number 1 (2015), 283-308.

Dates
First available in Project Euclid: 21 July 2015

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1437506250

Digital Object Identifier
doi:10.3836/tjm/1437506250

Mathematical Reviews number (MathSciNet)
MR3374627

Zentralblatt MATH identifier
1345.46021

Subjects
Primary: 26D10: Inequalities involving derivatives and differential and integral operators
Secondary: 46E30: Spaces of measurable functions (Lp-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)

Citation

BANG, Ha Huy; HUY, Vu Nhat. A Study of Behavior of the Sequence of Norm of Primitives of Functions in Orlicz Spaces Depending on Their Spectrum. Tokyo J. of Math. 38 (2015), no. 1, 283--308. doi:10.3836/tjm/1437506250. https://projecteuclid.org/euclid.tjm/1437506250


Export citation

References

  • L.D. Abreu, Real Paley-Wiener theorems for the Koornwinder-Swarttouw q-Hankel transform, J. Math. Anal. Appl. 334 (2007), 223–231.
  • E. Albrecht and Werner J. Ricker, Functional calculi and decomposability of unbounded multiplier operators in $L^{p}(\R^{N})$, Proc. Edinburgh Math. Soc. 38 (1995), 151–166.
  • E. Albrecht and W. J. Ricker, Local spectral properties of certain matrix differential operators in $L^{p}(\R^{N})^{m}$, J. Operator Theory 35 (1996), 3–37.
  • N.B. Andersen, On real Paley-Wiener theorems for certain integral transforms, J. Math. Anal. Appl. 288 (2003), 124–135.
  • N.B. Andersen, A simple proof of a Paley-Wiener type theorem for the Chébli-Trimèche transform, Publ. Math. Debrecen 64 (2004), 473–479.
  • N.B. Andersen, Real Paley-Wiener theorems for the inverse Fourier transform on a Riemannian symmetric space, Pacific J. Math. 213 (2004), 1–13.
  • N.B. Andersen, Real Paley-Wiener theorems, Bull. London Math. Soc. 36 (2004), 504–508.
  • N.B. Andersen and M. de Jeu, Elementary proofs of Paley-Wiener theorems for the Dunkl transform on the real line, Int. Math. Res. Notices 30 (2005), 1817–1831.
  • N.B. Andersen, Real Paley-Wiener theorems for the Hankel transform, J. Fourier Anal. Appl. 12 (2006), 17–25.
  • N.B. Andersen and M. de Jeu, Real Paley-Wiener theorems and local spectral radius formulas, Trans. Amer. Math. Soc. 362 (2010), 3613–3640.
  • H. Bohr, Ein allgemeiner Satz fiber die Integration eines trigonometrischen Polynoms, Prace Matem.-Fiz 43 (1935), 273–288.
  • H.H. Bang, A property of infinitely differentiable functions, Proc. Amer. Math. Soc. 108 (1990), 73–76.
  • H.H. Bang, Functions with bounded spectrum, Trans. Amer. Math. Soc. 347 (1995), 1067–1080.
  • H.H. Bang, A property of entire functions of exponential type, Analysis 15 (1995), 17–23.
  • H.H. Bang, The existence of a point spectral radius of pseudodifferential operators, Doklady Mathematics 53 (1996), 420–422.
  • H.H. Bang, The study of the properties of functions belonging to an Orlicz space depending on the geometry of their spectra, Izv. Akad. Nauk Ser. Mat. 61 (1997), 163–198.
  • H.H. Bang, A study of the properties of functions depending on the geometry of their spectrum, Doklady Akad. Nauk 355 (1997), 740–743.
  • H.H. Bang, An inequality of Bohr and Favard for Orlicz spaces, Bull. Polish Acad. Sci. Math. 49 (2001), 381–387.
  • H.H. Bang and M.T. Thu, A Gagliardo-Nirenberg inequality for Orlicz spaces, East J. Approx. 10 (2004), 371–377.
  • H.H. Bang and V.N. Huy, Behavior of the sequence of norms of primitives of a function, J. Approximation Theory 162 (2010), 1178–1186.
  • H.H. Bang and V.N. Huy, Behavior of the sequences of norms of primitives of functions depending on their spectrum, Doklady Akad. Nauk 440 (2011), 456–458.
  • J.J. Betancor, J.D. Betancor and J.M.R. Méndez, Paley-Wiener type theorems for Chébli- Trimèche transforms, Publ. Math. Debrecen 60 (2002), 347–358.
  • S.T. Chen, Geometry of Orlicz Spaces, Dissertationes Math. 356 (1996), 1–204.
  • C. Chettaoui and K. Trimèche, New type Paley-Wiener theorems for the Dunkl transform on $\R$, Integral Transforms Spec. Funct. 14 (2003), 97–115.
  • H. Garth Dales, Pietro Aeina, Jrg Eschmeier, Kjeld Laursen and George A. Willis, Introduction to Banach Algebras, Operators and Harmonic Analysis (2003), Cambridge University Press.
  • M. de Jeu, Some remarks on a proof of geometrical Paley-Wiener theorems for the Dunkl transform, Integral Transforms and Special Functions 18 (2007), 383–385.
  • M. de Jeu, Paley-Wiener theorems for the Dunkl transform, Trans. Amer. Math. Soc. 358 (2006), 4225–4250.
  • L. Hörmander, A new generalization of an inequality of Bohr, Math. Scand. 2 (1954), 33–45.
  • M.A. Krasnoselskii and Y. B. Rutickii, Convex Functions and Orlicz Spaces, GITTL, Moscow, 1958, English Transl. Noordhoff, 1961.
  • W. Luxemburg, Banach Function Spaces (Thesis), Technische Hogeschool te Delft., The Netherlands, 1955.
  • L. Maligranda, Orlicz Spaces and Interpolation, Seminars in Math. 5, Univ. Estadual de Campinas, Campinas, SP, Brasil, 1989.
  • J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer-Verlag, Berlin, 1983.
  • R. O'Neil, Fractional integration in Orlicz space I, Trans. Amer. Math. Soc. 115 (1965), 300–328.
  • M.M. Rao and Z.D. Ren, \em Theory of Orlicz Spaces, Marcel Dekker, Inc., New York, 1991.
  • M.M. Rao and Z.D. Ren, Applications of Orlicz Spaces, Marcel Dekker Inc., New York, 2002.
  • V.K. Tuan, On the supports of functions, Numer. Funct. Anal. Optim. 20 (1999), 387–394.
  • V.K. Tuan, Paley-Wiener-type theorems, Fract. Calc. Appl. Anal. 2 (1999), 135–144.
  • V.K. Tuan and A. Zayed, Paley-Wiener-type theorems for a class of integral transforms, J. Math. Anal. Appl. 266 (2002), 200–226.
  • V.K. Tuan, Spectrum of signals, J. Fourier Anal. Appl. 7 (2001), 319–323.
  • V.S. Vladimirov, Methods of the theory of Generalized Functions, Taylor & Francis, London, New York, 2002.