Tokyo Journal of Mathematics

Inversion Formula for the Discrete Radon Transform

Takeshi KAWAZOE

Full-text: Open access

Abstract

We shall give a characterization of the discrete Radon transform of functions in the Schwartz space on $\mathbb{Z}^n$ and obtain various inversion formulas for the discrete Radon transform on $\mathbb{Z}^2$.

Article information

Source
Tokyo J. Math., Volume 38, Number 1 (2015), 175-191.

Dates
First available in Project Euclid: 21 July 2015

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1437506243

Digital Object Identifier
doi:10.3836/tjm/1437506243

Mathematical Reviews number (MathSciNet)
MR3374620

Zentralblatt MATH identifier
1329.44001

Subjects
Primary: 44A12: Radon transform [See also 92C55]

Citation

KAWAZOE, Takeshi. Inversion Formula for the Discrete Radon Transform. Tokyo J. Math. 38 (2015), no. 1, 175--191. doi:10.3836/tjm/1437506243. https://projecteuclid.org/euclid.tjm/1437506243


Export citation

References

  • Abouelaz, A. and Ihsane, A. Diophantine Integral Geometry, Mediterr. J. Math. 5 (2008), 77–99.
  • Abouelaz, A. and Kawazoe, T. Characterizations of function spaces by the discrete Radon transform, Integral Transforms and Special Functions 23 (2012), 627–637.
  • Helgason, S. The Radon transform on Euclidean space, compact two-point homogeneous space and Grassmann manifolds, Acta Math. 113 (1965), 153–180.
  • Helgason, S. The Radon transform, Birkhäuser, Boston, 1980.
  • Radon, J. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Nat. Kl. 69 (1917), 262–277.
  • Strichartz, R. S. Radon inversion–-variations on a theme, Amer. Math. Monthly 89 (1982), 377–384, 420–423.