Tokyo Journal of Mathematics

A Criterion for Dualizing Modules

Kamran DIVAANI-AAZAR, Massoumeh NIKKHAH BABAEI, and Massoud TOUSI

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We establish a characterization of dualizing modules among semidualizing modules. Let $R$ be a finite dimensional commutative Noetherian ring with identity and $C$ a semidualizing $R$-module. We show that $C$ is a dualizing $R$-module if and only if $\mathrm{Tor}_i^R(E,E')$ is $C$-injective for all $C$-injective $R$-modules $E$ and $E'$ and all $i\geq 0$.

Article information

Source
Tokyo J. Math., Volume 38, Number 1 (2015), 135-143.

Dates
First available in Project Euclid: 21 July 2015

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1437506240

Digital Object Identifier
doi:10.3836/tjm/1437506240

Mathematical Reviews number (MathSciNet)
MR3374617

Zentralblatt MATH identifier
1337.13008

Subjects
Primary: 13C05: Structure, classification theorems
Secondary: 13D07: Homological functors on modules (Tor, Ext, etc.) 13H10: Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.) [See also 14M05]

Citation

DIVAANI-AAZAR, Kamran; NIKKHAH BABAEI, Massoumeh; TOUSI, Massoud. A Criterion for Dualizing Modules. Tokyo J. Math. 38 (2015), no. 1, 135--143. doi:10.3836/tjm/1437506240. https://projecteuclid.org/euclid.tjm/1437506240


Export citation

References

  • H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28.
  • W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge, 1998.
  • L.W. Christensen, Semi-dualizing complexes and their Auslander categories, Trans. Amer. Math. Soc. 353(5), (2001), 1839–1883.
  • E. E. Enochs and Z. Huang, Canonical filtrations of Gorenstein injective modules, Proc. Amer. Math. Soc. 139(7), (2011), 2415–2421.
  • E. E. Enochs and O. M. G. Jenda, Tensor and torsion products of injective modules, J. Pure Appl. Algebra 76(2), (1991), 143–149.
  • H. Holm and P. Jørgensen, Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra 205(2), (2006), 423–445.
  • H. Holm and P. Jørgensen, Cohen-Macaulay homological dimensions, Rend. Semin. Mat. Univ. Padova 117 (2007), 87–112.
  • T. Ishikawa, On injective modules and flat modules, J. Math. Soc. Japan 17(3), (1965), 291–292.
  • B. Kubik, M. J. Leamer and S. Sather-Wagstaff, Homology of Artinian and Matlis reflexive modules, I, J. Pure Appl. Algebra 215(10), (2011), 2486–2503.
  • H. Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, Cambridge, 1986.
  • S. Sather-Wagstaff, Semidualizing modules, 2009, preprint.
  • R. Takahashi, S. Yassemi and Y. Yoshino, On the existence of embeddings into modules of finite homological dimensions, Proc. Amer. Math. Soc. 138(7), (2010), 2265–2268.