Tokyo Journal of Mathematics

Characterization of Arithmetical Equivalence of Number Fields by Galois Groups with Restricted Ramification

Manabu OZAKI and Mitsul TOHKAILIN

Full-text: Open access

Abstract

We will give a characterization of arithmetical equivalence of number fields in terms of certain associated families of Galois groups with restricted ramification.

Article information

Source
Tokyo J. Math., Volume 36, Number 2 (2013), 347-354.

Dates
First available in Project Euclid: 31 January 2014

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1391177975

Digital Object Identifier
doi:10.3836/tjm/1391177975

Mathematical Reviews number (MathSciNet)
MR3161562

Zentralblatt MATH identifier
1286.11191

Subjects
Primary: 11R42: Zeta functions and $L$-functions of number fields [See also 11M41, 19F27]

Citation

TOHKAILIN, Mitsul; OZAKI, Manabu. Characterization of Arithmetical Equivalence of Number Fields by Galois Groups with Restricted Ramification. Tokyo J. Math. 36 (2013), no. 2, 347--354. doi:10.3836/tjm/1391177975. https://projecteuclid.org/euclid.tjm/1391177975


Export citation

References

  • N. Adachi and K. Komatsu, The maximal $p$-extensions and zeta-functions of algebraic number fields, Mem. School Sci. Engrg. Waseda Univ. No. 51 (1987), 25–31.
  • C. W. Curtis and I. Reiner, Methods of representation theory Vol. I, John Wiley & Sons, Inc., New York (1990).
  • N. Klingen, Arithmetical Similarities, Clarendon Press, Oxford (1998).
  • L. Ribes and P. Zalesskii, Profinite Groups, A series of Modern surveys in Mathematics, vol. 40, Springer (1991).