Tokyo Journal of Mathematics

$S^{1}$-equivariant CMC-hypersurfaces in the Hyperbolic 3-space and the Corresponding Lagrangians


Full-text: Open access


A family of $S^{1}$-equivariant hypersurfaces of constant mean curvature can be obtained by using the Lagrangians with suitable potentials in the hyperbolic 3-space. The conservation law is effectively applied to the construction of $S^{1}$-equivariant hypersurfaces of constant mean curvature in the hyperbolic 3-space.

Article information

Tokyo J. Math., Volume 36, Number 1 (2013), 207-213.

First available in Project Euclid: 22 July 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 53C43: Differential geometric aspects of harmonic maps [See also 58E20]
Secondary: 70H05: Hamilton's equations 70H33: Symmetries and conservation laws, reverse symmetries, invariant manifolds and their bifurcations, reduction


KIKUCHI, Keiichi. $S^{1}$-equivariant CMC-hypersurfaces in the Hyperbolic 3-space and the Corresponding Lagrangians. Tokyo J. Math. 36 (2013), no. 1, 207--213. doi:10.3836/tjm/1374497520.

Export citation


  • J. Eells, The surfaces of Delaunay, Math. Intell. 9 (1987), 53–57.
  • J. Eells and A. Ratto, Harmonic maps and minimal immersions with symmetries, Ann. Math. Studies 130, 1993.
  • E. V. Ferapontov and A. P. Fordy, Separable Hamiltonians and integrable systems of hydrodynamic type, J. Geometry and Physics 21 (1997), 169–182.
  • D. Ferus and F. Pedit, $S^{1}$-equivariant Minimal Tori in $S^{4}$ and $S^{1}$-equivariant Willmore Tori in $S^{3}$, Math. Z. 204 (1990), 269–282.
  • W-Y. Hsiang, On generalization of theorems of A. D. Alexandrov and C. Delaunay on hypersurfaces of constant mean curvature, Duke Math. J. 49 (1982), 485–496.
  • W-Y. Hsiang and H. B. Lawson, Minimal submanifolds of low cohomogeneity, J. Diff. Geom. 5 (1971), 1–38.
  • K. Kenmotsu, Kyokumenron Kougi (Japanese), Baifukan, 2000.
  • K. Kikuchi, The construction of rotation surfaces of constant mean curvature and the corresponding Lagrangians, Tsukuba J. Math. Vol. 36, No. 1 (2012), 43–52.
  • T. Otsuki, Minimal hypersurfaces in a Riemannian manifold of constant curvature, Amer. J. Math. 92 (1970), 145–173.
  • C. Von Westenholz, Differential forms in Mathematical Physics, Chap. 12 Hamiltonian mechanics and geometry, Series Studies in Mathematics and its Applications, Vol. 3, North-Holland, 1981.