Tokyo Journal of Mathematics

Transformations Which Preserve Cauchy Distributions and Their Ergodic Properties

Hiroshi ISHITANI

Full-text: Open access

Abstract

This paper is concerned with invariant densities for transformations on $\mathbb{R}$ which are the boundary restrictions of inner functions of the upper half plane. G. Letac [9] proved that if the corresponding inner function has a fixed point $z_{0}$ in $\mathbb{C}\setminus \mathbb{R}$ or a periodic point $z_{0}$ in $\mathbb{C}\setminus \mathbb{R}$ with period 2, then a Cauchy distribution $(1/\pi)\mathrm{Im}\left(1/(x-z_{0}) \right)$ is an invariant probability density for the transformation. Using Cauchy's integral formula, we give an easier proof of Letac's result. An easy sufficient condition for such transformations to be isomorphic to piecewise expanding transformations on an finite interval is given by the explicit form of the density. Transformations of the forms $\alpha x + \beta - \sum ^{n }_{k=1}b_{k}/(x-a_{k})$, \:$\alpha x-\sum ^{\infty }_{k=1}\left\{ b_{k}/(x-a_{k})+b_{k}/(x+a_{k}) \right\}$ and $\alpha x +\beta\tan x$ are studied as examples.

Article information

Source
Tokyo J. Math., Volume 36, Number 1 (2013), 177-193.

Dates
First available in Project Euclid: 22 July 2013

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1374497518

Digital Object Identifier
doi:10.3836/tjm/1374497518

Mathematical Reviews number (MathSciNet)
MR3112382

Zentralblatt MATH identifier
1351.37003

Subjects
Primary: 37A05: Measure-preserving transformations
Secondary: 37A50: Relations with probability theory and stochastic processes [See also 60Fxx and 60G10] 60F05: Central limit and other weak theorems

Citation

ISHITANI, Hiroshi. Transformations Which Preserve Cauchy Distributions and Their Ergodic Properties. Tokyo J. Math. 36 (2013), no. 1, 177--193. doi:10.3836/tjm/1374497518. https://projecteuclid.org/euclid.tjm/1374497518


Export citation

References

  • J. Aaronson, Ergodic theory for inner functions of the upper half plane, Ann. Inst. Henri Poincare 14 (1978), 233–253.
  • R. Bowen, Bernoulli maps of the interval, Israel J. Math. 28 (1977), 161–168.
  • A. Boyarsky and P. Góra, Laws of chaos: invariant measures and dynamical systems in one dimension, Birkhäuser: Boston, 1997.
  • F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise monotonic transformations, Math. Zeitschrift. 180 (1982), 119–140.
  • H. Ishitani, A central limit theorem of mixed type for a class of 1-dimensional transformations, Hiroshima Math. J. 16 (1986), 161–188.
  • H. Ishitani, Central limit theorems for the random iterations of 1-dimensional transformations, Dynamics of complex systems, Kokyuroku, RIMS, Kyoto Univ. 1404 (2004), 21–31.
  • H. Ishitani and K. Ishitani, Invariant measures for a class of rational transformations and ergodic properties, Tokyo J. Math. 30 (2007), 325–341.
  • A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481–488.
  • G. Letac, Which Functions Preserve Cauchy Laws? Proc. Amer. Math. Soc. 67 (1977), 277–286.
  • T. Y. Li and J. A. Yorke, Ergodic transformations from an interval into itself, Trans. Amer. Math. Soc. 235 (1978), 183–192.
  • N. F. G. Martin, On finite Blaschke products whose restrictions to the unit circle are exact endomorphisms, Bull. London Math. Soc. 15 (1983), 343–348.
  • J. Rousseau-Egele, Une théorème de la limite locale pour une classe de transformations dilatantes et monotones par morceaux, Ann. Probab. 11 (1983), 772–788.
  • M. Sato, Theory of hyperfunctions I, J. Fac. Sci. Univ. Tokyo, Sec. I 8 (1959), 139–193.