Tokyo Journal of Mathematics

Isomorphism Classes and Zeta-functions of Some Nilpotent Groups

Fumitake HYODO

Full-text: Open access


In this article, we study a class of groups which are commensurable with a direct product of the discrete Heisenberg group and a free abelian group, or a free abelian group by using zeta functions of groups defined by Grunewald, Segal, and Smith as generating functions of the number of subgroups of given index $n$. We will show that zeta functions determine their isomorphism classes for groups belonging to the above class.

Article information

Tokyo J. Math., Volume 36, Number 1 (2013), 163-175.

First available in Project Euclid: 22 July 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


HYODO, Fumitake. Isomorphism Classes and Zeta-functions of Some Nilpotent Groups. Tokyo J. Math. 36 (2013), no. 1, 163--175. doi:10.3836/tjm/1374497517.

Export citation


  • F. J. Grunewald and R. Scharlau, A note on finitely generated torsion-free groups of class 2. J. Algebra 58 (1979), 162–175.
  • F. J. Grunewald, D. Segal and G. C. Smith, Subgroups of finite index in nilpotent groups, Invent. Math. 93 (1988), 185–223.
  • M. P. F. du Sautoy and F. J. Grunewald, In Proceedings of the ICM Madrid 2006 volume 2 (2006), 131–149.
  • M. P. F. du Sautoy and L. Woodward, Zeta functions of groups and rings, Lecture Notes in Math, vol. 1925, Springer-Verlag, Berlin, 2008.
  • M. Stoll, Rational and transcendental growth series for the higher Heisenberg groups, Invent. Math. 126 (1996), 1, 85–109.
  • C. Voll, Functional equations for zeta functions of groups and rings, Ann. of Math. (2) 172 (2010), no. 2, 1181–1218.