Tokyo Journal of Mathematics

Manin Triples and Differential Operators on Quantum Groups

Toshiyuki TANISAKI

Full-text: Open access


Let $G$ be a simple algebraic group over $\mathbb{C}$. By taking the quasi-classical limit of the ring of differential operators on the corresponding quantized algebraic group at roots of 1 we obtain a Poisson manifold $\Delta G\times K$, where $\Delta G$ is the subgroup of $G\times G$ consisting of the diagonal elements, and $K$ is a certain subgroup of $G\times G$. We show that this Poisson structure coincides with the one introduced by Semenov-Tyan-Shansky geometrically in the framework of Manin triples.

Article information

Tokyo J. Math., Volume 36, Number 1 (2013), 49-83.

First available in Project Euclid: 22 July 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 20G05: Representation theory
Secondary: 17B37: Quantum groups (quantized enveloping algebras) and related deformations [See also 16T20, 20G42, 81R50, 82B23] 53D99: None of the above, but in this section


TANISAKI, Toshiyuki. Manin Triples and Differential Operators on Quantum Groups. Tokyo J. Math. 36 (2013), no. 1, 49--83. doi:10.3836/tjm/1374497512.

Export citation


  • C. De Concini, Poisson algebraic groups and representations of quantum groups at roots of $1$, First European Congress of Mathematics, Vol. I, eds. A. Joseph et al., Progr. Math. 119, Birkhäuser, 1994, 93–119.
  • C. De Concini and V. Kac, Representations of quantum groups at roots of $1$, Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory, eds. A. Connes et al., Progr. Math. 92, Birkhäuser, 1990, 471–506.
  • C. De Concini and V. Lyubashenko, Quantum function algebra at roots of $1$, Adv. Math. 108 (1994), 205–262.
  • C. De Concini and C. Procesi, Quantum groups, $D$-modules, Representation Theory and Quantum Groups, eds. G. Zampieri et al., Lecture Notes in Mathematics 1565, Springer, 1993, 31–140.
  • V. Drinfeld, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., 1987, 798–820.
  • F. Gavarini, Quantization of Poisson groups, Pacific J. Math. 186 (1998), 217–266.
  • A. N. Kirilllov and N. Reshetikhin,\enskip $q$-Weyl group and a multiplicative formula for universal $R$-matrices, Comm. Math. Phys. 134 (1990), 421–431.
  • S. M. Khoroshkin and V. N. Tolstoy, Universal $R$-matrix for quantized (super) algebras, Comm. Math. Phys. 141 (1991), 599–617.
  • G. Lusztig, Quantum groups at roots of 1, Geom. Dedicata 35 (1990), 89–114.
  • G. Lusztig, Introduction to quantum groups, Progr. Math. 110, Birkhäuser, 1993.
  • S. Z. Levendorskii and Ya. S. Soibelman, Quantum Weyl group and multiplicative formula for the $R$-matrix of a simple Lie algebra, Funct. Anal. Appl. 25 (1991), 143–145.
  • J. H. Lu, On the Drinfeld double and the Heisenberg double of a Hopf algebra, Duke Math. J. 74 (1994), no. 3, 763–776.
  • M. A. Semenov-Tyan-Shansky, Dressing transformations and Poisson group actions, Publ. Res. Inst. Math. Sci. 21 (1985), 1237–1260.
  • M. A. Semenov-Tyan-Shansky, Poisson Lie groups, quantum duality principle, and the quantum double, Mathematical aspects of conformal and topological field theories and quantum groups, Contemp. Math. 175, Amer. Math. Soc., 1994, 219–248.
  • T. Tanisaki, The Beilinson-Bernstein correspondence for quantized enveloping algebras, Math. Z. 250 (2005), no. 2, 299–361.
  • T. Tanisaki, Differential operators on quantized flag manifolds at roots of unity, Adv. Math. 230 (2012), no. 4–6, 2235–2294.
  • T. Tanisaki, Differential operators on quantized flag manifolds at roots of unity II, arXiv:1101.5848.