Tokyo Journal of Mathematics

A Simple Proof of the Functional Relation for the Lerch Type Tornheim Double Zeta Function

Takashi NAKAMURA

Full-text: Open access

Abstract

In this paper, we give a simple proof of the functional relation for the Lerch type Tornheim double zeta function. By using it, we obtain simple proofs of some explicit evaluation formulas for double $L$-values.

Article information

Source
Tokyo J. of Math. Volume 35, Number 2 (2012), 333-337.

Dates
First available in Project Euclid: 23 January 2013

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1358951322

Digital Object Identifier
doi:10.3836/tjm/1358951322

Mathematical Reviews number (MathSciNet)
MR3058710

Zentralblatt MATH identifier
1276.11143

Subjects
Primary: 11M32: Multiple Dirichlet series and zeta functions and multizeta values

Citation

NAKAMURA, Takashi. A Simple Proof of the Functional Relation for the Lerch Type Tornheim Double Zeta Function. Tokyo J. of Math. 35 (2012), no. 2, 333--337. doi:10.3836/tjm/1358951322. https://projecteuclid.org/euclid.tjm/1358951322


Export citation

References

  • T. Arakawa and M. Kaneko, On multiple $L$-values, J. Math. Soc. Japan 56, no. 4 (2004), 967–991.
  • Z. Li, On functional relations for the alternating analogues of Tornheim's double zeta function, arXiv:1011.2897v1.
  • K. Matsumoto, On Mordell-Tornheim and other multiple zeta-functions, Proceedings of the Session in Analytic Number Theory and Diophantine Equations, Bonner Math. Schriften 360, Univ. Bonn, Bonn, 2003, 17 pp.
  • K. Matsumoto and H. Tsumura, Functional relations among certain double polylogarithms and their character analogues, Šiauliai Math. Semin. 11 (2008), 189–205.
  • T. Nakamura, A functional relation for the Tornheim double zeta function, Acta Arith. 125, no. 3 (2006), 257–263.
  • T. Nakamura, Double Lerch series and their functional relations, Aequationes Mathematicae 75, no. 3 (2008), 251–259.
  • T. Nakamura, Double Lerch value relations and functional relations for Witten zeta functions, Tokyo J. Math. 31, no. 2 (2008), 551–574.
  • D. Terhune, Evaluation of double $L$-values, J. Number Theory 105, no. 2 (2004), 275–301.
  • H. Tsumura, On functional relations between the Mordell-Tornheim double zeta functions and the Riemann zeta function, Math. Proc. Camb. Phil. Soc. 142 (2007), 395–405.
  • X. Zhou, T. Cai and D. M. Bradley, Signed $q$-analogs of Tornheim's double series, Proc. Amer. Math. Soc. 136, no. 8 (2008), 2689–2698.
  • X. Zhou, A functional relation for the Tornheim double zeta function, preprint.