Tokyo Journal of Mathematics

Generalized Besov Spaces and Their Applications

Takeshi KAWAZOE and Hatem MEJJAOLI

Full-text: Open access


We define and study the Bessel potential and inhomogeneous Besov spaces associated with the Dunkl operators on $\mathbf{R}^d$. As applications on these spaces we construct the Sobolev type embedding theorem and the paraproduct operators associated with the Dunkl operators, as similar to those defined by Bony. We also establish Strichartz type estimates for the Dunkl-Schrödinger equation and finally we study the problem of well posedness of the generalized heat equation.

Article information

Tokyo J. Math., Volume 35, Number 2 (2012), 297-320.

First available in Project Euclid: 23 January 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 35L05: Wave equation
Secondary: 46E35: Sobolev spaces and other spaces of "smooth" functions, embedding theorems, trace theorems 35J25: Boundary value problems for second-order elliptic equations 22E30: Analysis on real and complex Lie groups [See also 33C80, 43-XX]


KAWAZOE, Takeshi; MEJJAOLI, Hatem. Generalized Besov Spaces and Their Applications. Tokyo J. Math. 35 (2012), no. 2, 297--320. doi:10.3836/tjm/1358951320.

Export citation


  • C. Abdelkefi, J-Ph. Anker, F. Sassi and M. Sifi, Besov-type spaces on ${\mathbb R}^d$ and integrability for the Dunkl transform, Symmetry, Integrability and Geometry, Method and Applications, SIGMA, 5 (2009), 1–15.
  • J. M. Bony, Calcul symbolique et propogation des singularités pour les équations aux dérivées partielles non linéaires, Annales de l'École Normale Supérieure, 14 (1981), 209–246.
  • C. F. Dunkl, Differential-difference operators associated to reflection group, Trans. Amer. Math. Soc. 311 (1989), 167–183.
  • C. F. Dunkl, Integral kernels with reflection group invariant, Can. J. Math. 43 (1991), 1213–1227.
  • C. F. Dunkl, Hankel transforms associated to finite reflection groups, Contemp. Math. 138 (1992), 123–138.
  • M. F. E. de Jeu, The Dunkl transform, Invent. Math. 113 (1993), 147–162.
  • H. Mejjaoli, Littlewood-Paley decomposition associated with the Dunkl operators, and paraproduct operators, J. Inequal. Pure App. Math. 9 (2008), 1–25.
  • H. Mejjaoli, Dispersion phenomena in Dunkl-Schrödinger equation and applications, Serdica Math. J. 35 (2009), 25–60.
  • H. Mejjaoli, Dunkl-heat equations and applications, preprint (2010).
  • J. Peetre, Sur les espaces de Besov, C.R.A.S. Paris Sér.I Math. 264 (1967), 281–283.
  • M. Rösler, Generalized Hermite polynomials and the heat equation for Dunkl operators, Comm. Math. Phys. 192 (1998), 519–541.
  • M. Rösler, A positive radial product formula for the Dunkl kernel, Trans. Amer. Math. Soc. 355 (2003), 2413–2438.
  • E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press (1970).
  • S. Thangavelu and Y. Xu, Convolution operator and maximal functions for Dunkl transform, J. d'Analyse Mathematique 97 (2005), 25–56.
  • H. Triebel, Spaces of distributions of Besov type on Euclidean $n$-space. Duality, interpolation, Ark. Mat. 11 (1973), 13–64.
  • H. Triebel, Interpolation theory, functions spaces differential operators, North-Holand Amesterdam (1978).
  • K. Trimèche, The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual, Integ. Transf. and Special Funct. 12 (2001), 349–374.
  • K. Trimèche, Paley-Wiener theorems for Dunkl transform and Dunkl translation operators, Integ. Transf. and Special Funct. 13 (2002), 17–38.