Tokyo Journal of Mathematics

Some Relations among Apostol-Vu Double Zeta Values for Coordinatewise Limits at Non-positive Integers

Takuya OKAMOTO

Full-text: Open access

Abstract

We consider Apostol-Vu double zeta values for coordinatewise limits at non-positive integers, and we give some relations among Riemann's zeta values, Euler-Zagier double zeta values and Apostol-Vu double zeta values for all coordinatewise limits at non-positive integers. Using the relations, we also give relations among multiple Bernoulli numbers.

Article information

Source
Tokyo J. of Math. Volume 34, Number 2 (2011), 353-366.

Dates
First available in Project Euclid: 30 January 2012

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1327931391

Digital Object Identifier
doi:10.3836/tjm/1327931391

Mathematical Reviews number (MathSciNet)
MR2918911

Zentralblatt MATH identifier
1269.11085

Subjects
Primary: 40B05: Multiple sequences and series (should also be assigned at least one other classification number in this section)
Secondary: 11M41: Other Dirichlet series and zeta functions {For local and global ground fields, see 11R42, 11R52, 11S40, 11S45; for algebro-geometric methods, see 14G10; see also 11E45, 11F66, 11F70, 11F72}

Citation

OKAMOTO, Takuya. Some Relations among Apostol-Vu Double Zeta Values for Coordinatewise Limits at Non-positive Integers. Tokyo J. of Math. 34 (2011), no. 2, 353--366. doi:10.3836/tjm/1327931391. https://projecteuclid.org/euclid.tjm/1327931391.


Export citation

References

  • S. Akiyama, S. Egami and Y. Tanigawa, Analytic continuation of multiple zeta-functions and their values at non-positive integers, Acta Arith., 98 (2001), 107–116.
  • S. Akiyama and Y. Tanigawa, Multiple zeta values at non-positive integers, Ramanujan J., 5 (2001), 327–351.
  • T. M. Apostol and T. H. Vu, Dirichlet series related to the Riemann zeta function, J. Number Theory, 19 (1984), 85–102.
  • L. Euler, Meditationes circa singulare serierum genus, Novi Comm. Acad. Sci. Petropol, 20 (1775), 140–186, reprinted in Opera Omnia ser. I, vol. 15, B. G. Teubner, Berlin, 1927, 217–267
  • A. Granville, A decomposition of Riemann's zeta-function, in: London Math. Soc. Lectuer Note Ser., 247, Cambridge Univ. Press, 1997, 95–101.
  • M. Hoffman, Multiple harmonic series, Pscific J. Math., 152 (1992), 275–290.
  • G. Kawashima, A class of relations among multiple zeta values, J. Number Theory, 129 (2009), 755–788.
  • Y. Komori, An integral representation of Mordell-Tornheim double zeta function and its values at non-positive integers, Ramanujan J., 19 (2008), 163–183.
  • Y. Komori, An integral representation of multiple Hurwitz-Lerch zeta function and generalized multiple Bernoulli numbers, Quart. J. Math. (2009), 1–60.
  • K. Matsumoto, On the analytic continuation of various multiple zeta-functions, in: M. A. Bennett et al.(Eds), Number Theory for the Millennium II, Proc. Millennial Conference on Number Theory, A K Peters, Wellesley, 2002, pp., 417–440.
  • K. Matsumoto, The analytic continuation and the asymptotic behaviour of certain multiple zeta-functions I, J. Number Theory, 101 (2003), 223–243.
  • K. Matsumoto, Asymptotic expansions of double zeta-functions of Barnes, of Shintani, and Eisenstein series, Nagoya Math. J., 172 (2003), 59–102.
  • K. Matsumoto, On Mordell-Tornheim and other multiple zeta-functions, In: Proc. Session in Analytic Number Theory and Diophantine Equations, (eds. D. R. Heath-Brown and B. Z. Moroz), Bonner Math. Schriften, 360, Bonn, 2003, n. 25, 17pp.
  • K. Matsumoto and H. Tsumura, On Witten multiple zeta-functions associated with semisimple Lie algebras I, Ann. Inst. Fourier (Grenoble), 56 (2006), 1457–1504
  • Y. Ohno, A genaralization of the duality and sum formulas on the multiple zeta values, J. Number Theory, 74 (1999), 39–43.
  • T. Okamoto, Generalizations of Apostol-Vu and Mordell-Tornheim multiple zeta functions, Acta Arith., 140 (2009), 169–187.
  • Y. Sasaki, Multiple zeta values for coordinatewise limits at non-positive integers, Acta Arith., 136 (2009), 299–317.
  • E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, 1927.
  • D. Zagier, Values of zeta functions and their applications, In: First European Congr. Math. Vol. II, (eds. A. Joseph et al.), Progr. Math., 120, Birkhäuser, 1994, pp. 497–512.
  • J. Q. Zhao, Analytic continuation of multiple zeta functions, Proc. Amer. Math. Soc., 128 (2000), 1275–1283.