Tokyo Journal of Mathematics

Witten Multiple Zeta Values Attached to $\mathfrak{sl}(4)$

Jianqiang ZHAO and Xia ZHOU

Full-text: Open access


In this paper we shall prove that every Witten multiple zeta value of weight $w>3$ attached to $\mathfrak{sl}(4)$ at nonnegative integer arguments is a finite $\mathbb{Q}$-linear combination of MZVs of weight $w$ and depth three or less, except for the nine irregular cases where the Riemann zeta value $\zeta(w-2)$ and the double zeta values of weight $w-1$ and depth $<3$ are also needed.

Article information

Tokyo J. of Math. Volume 34, Number 1 (2011), 135-152.

First available in Project Euclid: 11 August 2011

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11M41: Other Dirichlet series and zeta functions {For local and global ground fields, see 11R42, 11R52, 11S40, 11S45; for algebro-geometric methods, see 14G10; see also 11E45, 11F66, 11F70, 11F72}
Secondary: 11M32: Multiple Dirichlet series and zeta functions and multizeta values


ZHAO, Jianqiang; ZHOU, Xia. Witten Multiple Zeta Values Attached to $\mathfrak{sl}(4)$. Tokyo J. of Math. 34 (2011), no. 1, 135--152. doi:10.3836/tjm/1313074447.

Export citation


  • S. Akiyama, S. Egami and Y. Tanigawa, Analytic continuation of multiple zeta-functions and their values at non-positive integers, Acta Arith., 98 (2001), 107–116.
  • M. Bigotte, G. Jacob, N. E. Oussous, M. Petitot and H. N. Minh, Table of the coloured zeta function, with 1 roots, up to the weight 12, %
  • J. M. Borwein, D. M. Bradley, D. J. Broadhurst and P. Lison\v ek, Combinatorial aspects of multiple zeta values, Electron. J. Combin., 5 (1998), Research Paper 38.
  • J. Borwein, P. Lisonek and P. Irvine, An interface for evaluation of Euler sums, http://oldweb.,
  • M. de Crisenoy, Values at $T$-tuples of negative integers of twisted multivariable zeta series associated to polynomials of several variables, Compositio Math., 142 (2006), 1373–1402.
  • D. Essouabri, Singularités des séries de Dirichlet associées à des polynômes de plusieurs variables et applications en théorie analytique des nombres, Ann. Inst. Fourier, 47 (1997), 429–483.
  • L. Euler, Meditationes circa singulare serierum genus, Novi Comm. Acad. Sci. Petropol., 20 (1775), 140–186, reprinted in “Opera Omnia,” series I, 15, B. G. Teubner, Berlin (1927), 217–267.
  • P. E. Gunnells and R. Sczech, Evaluation of Dedekind sums, Eisenstein cocycles, and special values of $L$-functions, Duke Math. J., 118 (2003), 229–260.
  • M. E. Hoffman, Multiple harmonic series, Pacific J. Math., 152 (1992), 275–290.
  • K. Ihara, M. Kaneko and D. Zagier, Derivation and double shuffle relations for multiple zeta values, Compositio Math., 142 (2006), 307–338.
  • K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Graduate Texts in Math. 84, 2nd ed., Springer, 1998.
  • Y. Komori, K. Matsumoto and H. Tsumura, Zeta functions of root systems, in: The Conference on $L$-Functions, World Sci. Publ., Hackensack, NJ, 2007, 115–40.
  • Y. Komori, K. Matsumoto and H. Tsumura, Zeta and $L$-functions and Bernoulli polynomials of root systems, Proc. Japan Acad. Ser. A, 84 (2008), 57–62.
  • Y. Komori, K. Matsumoto and H. Tsumura, On Witten multiple zeta-functions associated with semisimple Lie algebras II, J. Math. Soc. Japan, 62 (2010), 355–394.
  • Y. Komori, K. Matsumoto and H. Tsumura, On Witten multiple zeta-functions associated with semisimple Lie algebras III, arXiv: math, /0907.0955.
  • K. Matsumoto, On Mordell-Tornheim and other multiple zeta-functions, in: Proc. of the Session in analytic number theory and Diophantine equations, ed. D.R. Heath-Brown and B.Z. Moroz, Bonner Mathematische Schriften, 25, 2003, 17 pages.
  • K. Matsumoto and H. Tsumura, On Witten multiple zeta-functions associated with semisimple Lie algebras I, Annales de l'institut Fourier, 56 (2006), 1457–1504.
  • L. J. Mordell, On the evaluation of some multiple series, J. London Math. Soc., 33 (1958), 368–271.
  • T. Nakamura, Double Lerch value relations and functional relations for Witten zeta functions, Tokyo J. Math., 31 (2008), 551–574.
  • Y. Ohno and W. Zudilin, Zeta stars, Commun. Number Theory Phys., 2 (2008), 325–347.
  • T. Terasoma, Rational convex cones and cyclotomic multiple zeta values, arXiv: math, /0410306
  • L. Tornheim, Harmonic double series, Amer. J. Math., 72 (1950), 303–314.
  • H. Tsumura, On Wittens type of zeta values attached to, SO(5), Arch. Math. 82 (2004), 147–152.
  • E. Witten, On quantum gauge theories in two-dimensions, Commun. Math. Phys., 141 (1991), 153–209.
  • D. Zagier, Values of zeta function and their applications, in: Proc. of the First European Congress of Math., Vol., 2, 1994, 497–512.
  • J. Zhao, Analytic continuation of multiple zeta functions, Proc. Amer. Math. Soc., 128 (1999), 1275–1283.
  • J. Zhao, Alternating Euler sums and special values of Witten multiple zeta function attached to so(5). In J. Aust. Math. Soc., 89 (2011), 419–430. doi:10.1017/S1446788711001054.
  • J. Zhao, Multi-polylogs at twelfth roots of unity and special values of Witten multiple zeta function attached to the exceptional Lie algebra ${\mathfrak g}_2$. J. Algebra Appl., 9 (2010), 327-337.
  • J. Zhao, Witten volume formulas for semi-simple Lie algebras, Proc. of the Integers Conference 2009 in Honor of the Birthdays of Melvyn Nathanson and Carl Pomerance, Integers, 11A (2010), #A22.
  • X. Zhou and D. M. Bradley, On Mordell-Tornheim sums and multiple zeta values, Ann. Sci. Math., 34 (2010), 15–23.