Tokyo Journal of Mathematics

On the Global Monodromy of a Fibration of the Fermat Surface of Odd Degree $n$

Kazushi AHARA and Ikuko AWATA

Full-text: Open access

Abstract

The purpose of this paper is to investigate the global topological monodromy of a certain fibration of the Fermat surface without using numerical analysis by computer.

Article information

Source
Tokyo J. Math., Volume 34, Number 1 (2011), 19-52.

Dates
First available in Project Euclid: 11 August 2011

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1313074444

Digital Object Identifier
doi:10.3836/tjm/1313074444

Mathematical Reviews number (MathSciNet)
MR2866636

Zentralblatt MATH identifier
1222.14016

Citation

AHARA, Kazushi; AWATA, Ikuko. On the Global Monodromy of a Fibration of the Fermat Surface of Odd Degree $n$. Tokyo J. Math. 34 (2011), no. 1, 19--52. doi:10.3836/tjm/1313074444. https://projecteuclid.org/euclid.tjm/1313074444


Export citation

References

  • K. Ahara, On the Topology of Fermat Type Surface of Degree $5$ and the Numerical Analysis of Algebraic Curves, Tokyo Journal of Mathematics vol. 16, no. 2 (1993), 321–340.
  • K. Ahara, On the Monodromy Homomorphism from the Fibering structure of Fermat Type Surface of Degree $6$, MIMS Technical Report, Meiji Univ, no. 24, (2000).
  • K. Ahara, Monomie, you can download this from http://www.geocities.co.jp/CollegeLife-Labo, /9021/
  • K. Ahara and I. Awata, On the Global Monodromy of a Fibration of the Fermat Surface of Degree $n$ (full version), MIMS, preprint.
  • K. Ahara and I. Awata, Subordinate Fibers of Takamura Splitting Families for Stellar Singular Fibers, J. Math Soc. Japan, vol. 60, no. 4 (2008), 983–1007.,
  • Y. Kuno, On the Global Monodromy of a Lefschetz Fibration Arising from the Fermat Surface of Degree $4$, preprint, (2009).
  • Y. Matsumoto, On the Topological Structure of the Fermat Surface of Degree $5$, Kodai. Math. vol. 17, no. 3 (1994), 560–570.
  • Y. Matsumoto, On the Fibering Structure of the Fermat Surface, Proceeding of algebraic geometry and topology of Hodge theory, degenerations and complex surface (2004), in, Japanese.
  • Y. Matsumoto and J. M. Montesinos-Amilibia, Pseudo-periodic Homeomorphism and Degeneration of Riemann Surfaces, Bull. AMS. 30 (1994), 70–75.
  • Y. Matsumoto and J. M. Montesinos-Amilibia, Pseudo-periodic Maps and Degeneration of Riemann Surfaces, I, II, Preprint, University of Tokyo and Universidad Complutense de Madrid, (1991/1992).