Tokyo Journal of Mathematics

Heat Kernel Estimates for Random Walks on Some Kinds of One-dimensional Continuum Percolation Clusters

Jun MISUMI

Full-text: Open access

Abstract

We consider random walks on random graphs determined by a some kind of continuum percolation on $\mathbf{R}$. The vertex set of the random graph is given by the Poisson points conditioned that all points of $\mathbf{Z}$ are contained. The edge set of the random graph is determined by the random radii of the spheres centered at each points. We give heat kernel estimates for the random walks under the condition on the moment of the random radii. We will also discuss random walks on continuum percolation clusters in $\mathbf{R}^d$, $d\ge 2$.

Article information

Source
Tokyo J. Math., Volume 34, Number 1 (2011), 1-17.

Dates
First available in Project Euclid: 11 August 2011

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1313074443

Digital Object Identifier
doi:10.3836/tjm/1313074443

Mathematical Reviews number (MathSciNet)
MR2866635

Zentralblatt MATH identifier
1235.60140

Citation

MISUMI, Jun. Heat Kernel Estimates for Random Walks on Some Kinds of One-dimensional Continuum Percolation Clusters. Tokyo J. Math. 34 (2011), no. 1, 1--17. doi:10.3836/tjm/1313074443. https://projecteuclid.org/euclid.tjm/1313074443


Export citation

References

  • Barlow, M. T., Random walks on supercritical percolation clusters, Ann. Probab., 32 (2004), 3024–3084.
  • Barlow, M. T., Járai, A. A., Kumagai, T. and Slade, G., Random walk on the incipient infinite cluster for oriented percolation in high dimensions, Comm. Math. Phys., 278 (2008), 385–431.
  • Barlow, M. T. and Kumagai, T., Random walk on the incipient infinite cluster on trees, Illinois J. Math., 50 (2006), 33–65 (Doob volume).
  • Berger, N., Transience, recurrence and critical behavior for long-range percolation, Comm. Math. Phys., 226 (2002), 531–558.
  • Crawford, N. and Sly, A., Heat kernel upper bounds on long range percolation clusters, arXiv :0907.2434 (2009).,
  • Grimmett, G. R., Kesten, H. and Zhang, Y., Random walk on the infinite cluster of the percolation model, Probab. Theory Related Fields., 96 (1993), 33–44.
  • Kumagai, T. and Misumi, J., Heat kernel estimates for strongly recurrent random walk on random media, J. Theoret. Probab., 21 (2008), 910–935.
  • Meester, R. and Roy, R., Continuum percolation, Cambridge University Press, Cambridge, (1996).,
  • Tanemura, H., Homogenization of a reflecting barrier Brownian motion in a continuum percolation cluster in ${\bR}^d$, Kodai Math. J., 17 (1994), 228–245.
  • Wang, J., Random walk on the Poisson points of infinite cluster of the continuous percolation, Math. Japon., 48 (1998), 391–397.