Tokyo Journal of Mathematics

The IH-complex of Spatial Trivalent Graphs

Atsushi ISHII and Kengo KISHIMOTO

Full-text: Open access


We define the IH-complex on the set of spatial trivalent graphs by using the IH-move, which is a local spatial move appeared in a study of knotted handlebodies. The IH-distance between two spatial trivalent graphs is defined by the minimal number of IH-moves needed to transform one into the other. It gives a distance function on the IH-complex. We give a lower bound for the IH-distance, and evaluate it.

Article information

Tokyo J. Math., Volume 33, Number 2 (2010), 523-535.

First available in Project Euclid: 31 January 2011

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45}


ISHII, Atsushi; KISHIMOTO, Kengo. The IH-complex of Spatial Trivalent Graphs. Tokyo J. Math. 33 (2010), no. 2, 523--535. doi:10.3836/tjm/1296483486.

Export citation


  • S. Baader, Note on crossing changes, Q. J. Math. 57 (2006), 139–142.
  • M. Hirasawa and Y. Uchida, The Gordian complex of knots, J. Knot Theory Ramifications 11 (2002), 363–368.
  • A. Ishii, Moves and invariants for knotted handlebodies, Algebr. Geom. Topol. 8 (2008), 1403–1418.
  • A. Ishii and M. Iwakiri, Quandle cocycle invariants for spatial graphs and knotted handlebodies, to appear in Canad. J. Math.
  • D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Alg. 23 (1982), 37–65.
  • Y. Koda, Tunnel complexes of 3-manifolds, preprint.
  • S. V. Matveev, Distributive groupoids in knot theory, Mat. Sb. (N.S.) 119(161) (1982), 78–88.
  • Y. Nakanishi, Local moves and Gordian complexes, II, Kyungpook Math. J. 47 (2007), 329–334.
  • Y. Nakanishi and Y. Ohyama, Local moves and Gordian complexes, J. Knot Theory Ramifications 15 (2006), 1215–1224.
  • Y. Ohyama, The $C_k$-Gordian complex of knots, J. Knot Theory Ramifications 15 (2006), 73–80.
  • S. Suzuki, On linear graphs in $3$-sphere, Osaka J. Math. 7 (1970), 375–396.