Tokyo Journal of Mathematics

Braid Presentation of Spatial Graphs

Ken KANNO and Kouki TANIYAMA

Full-text: Open access

Abstract

We define braid presentation of edge-oriented spatial graphs as a natural generalization of braid presentation of oriented links. We show that every spatial graph has a braid presentation. For an oriented link, it is known that the braid index is equal to the minimal number of Seifert circles. We show that an analogy does not hold for spatial graphs.

Article information

Source
Tokyo J. Math., Volume 33, Number 2 (2010), 509-522.

Dates
First available in Project Euclid: 31 January 2011

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1296483485

Digital Object Identifier
doi:10.3836/tjm/1296483485

Mathematical Reviews number (MathSciNet)
MR2779432

Zentralblatt MATH identifier
1210.57008

Subjects
Primary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45}
Secondary: 57M15: Relations with graph theory [See also 05Cxx]

Citation

KANNO, Ken; TANIYAMA, Kouki. Braid Presentation of Spatial Graphs. Tokyo J. Math. 33 (2010), no. 2, 509--522. doi:10.3836/tjm/1296483485. https://projecteuclid.org/euclid.tjm/1296483485


Export citation

References

  • J. Alexander, A lemma on systems of knotted curves, Proc. Natl. Acad. Sci. USA 9 (1923), 93–95.
  • H. Brunn, Uber verknotete Kurven, Verhandlungen des Internationalen Math. Kongresses (Zurich 1897), Leipzig, (1898), 256–259.
  • P. Cromwell, Embedding knots and links in an open book I: Basic properties, Topology Appl. 64 (1995), 37–58.
  • H. Matsuda and W. Menasco, On rectangular diagrams, Legendrian knots and transverse knots, arXiv:math.GT/0708.2406, 2007.
  • T. Shinnoki and T. Takamuki, On the braid index of $\theta_m$-curve in 3-space, Math. Nachr. 260 (2003), 84–92.
  • S. Yamada, The minimal number of Seifert circles equals the braid index of a link, Invent. Math. 89 (1987), 347–356.