Tokyo Journal of Mathematics

Estimates of the Eigenvalues of Hill's Operator with Distributional Coefficients

Masashi KATO

Full-text: Open access

Abstract

We give an optimal upper bound for the eigenvalues of the Hill operator with a distributional coefficient.

Article information

Source
Tokyo J. Math., Volume 33, Number 2 (2010), 361-364.

Dates
First available in Project Euclid: 31 January 2011

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1296483475

Digital Object Identifier
doi:10.3836/tjm/1296483475

Mathematical Reviews number (MathSciNet)
MR2779262

Zentralblatt MATH identifier
1214.47037

Citation

KATO, Masashi. Estimates of the Eigenvalues of Hill's Operator with Distributional Coefficients. Tokyo J. Math. 33 (2010), no. 2, 361--364. doi:10.3836/tjm/1296483475. https://projecteuclid.org/euclid.tjm/1296483475


Export citation

References

  • E. Korotyaev, Characterization of the Spectrum of Schrödinger Operators with Periodic Distributions, Int. Math. Res. Not. 37 (2003), 2019–2031.
  • L. Blumenson, On the Eigenvalues of Hill's Equation, Comm. Pure Appl. Math. 16 (1963), 261–266.
  • E. B. Davies, Spectral Theory and Differential Operators, Cambridge Studies in Advanced Mathematics 42, Cambridge Univ. Press, Cambridge, 1995.
  • M. Reed and B. Simon, Methods of Modern Mathematical Physics II$:$ Fourier Analysis, Self-adjointness, Academic Press, San Diego, 1975.