Tokyo Journal of Mathematics

Estimates of the Eigenvalues of Hill's Operator with Distributional Coefficients

Masashi KATO

Full-text: Open access


We give an optimal upper bound for the eigenvalues of the Hill operator with a distributional coefficient.

Article information

Tokyo J. Math., Volume 33, Number 2 (2010), 361-364.

First available in Project Euclid: 31 January 2011

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


KATO, Masashi. Estimates of the Eigenvalues of Hill's Operator with Distributional Coefficients. Tokyo J. Math. 33 (2010), no. 2, 361--364. doi:10.3836/tjm/1296483475.

Export citation


  • E. Korotyaev, Characterization of the Spectrum of Schrödinger Operators with Periodic Distributions, Int. Math. Res. Not. 37 (2003), 2019–2031.
  • L. Blumenson, On the Eigenvalues of Hill's Equation, Comm. Pure Appl. Math. 16 (1963), 261–266.
  • E. B. Davies, Spectral Theory and Differential Operators, Cambridge Studies in Advanced Mathematics 42, Cambridge Univ. Press, Cambridge, 1995.
  • M. Reed and B. Simon, Methods of Modern Mathematical Physics II$:$ Fourier Analysis, Self-adjointness, Academic Press, San Diego, 1975.