Tokyo Journal of Mathematics

Hopf Hypersurfaces with Constant Principal Curvatures in Complex Projective or Complex Hyperbolic Spaces

Bang-Yen CHEN and Sadahiro MAEDA

Full-text: Open access

Abstract

A real hypersurface of a complex space form is called a Hopf hypersurface if the characteristic vector field $\xi=-JN$ on $M$ is a principal curvature vector. The main purpose of this paper is to obtain several simple geometric characterizations of all Hopf hypersurfaces with constant principal curvatures in nonflat complex space forms.

Article information

Source
Tokyo J. Math., Volume 24, Number 1 (2001), 133-152.

Dates
First available in Project Euclid: 19 October 2009

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1255958318

Digital Object Identifier
doi:10.3836/tjm/1255958318

Mathematical Reviews number (MathSciNet)
MR1844424

Zentralblatt MATH identifier
1015.53039

Citation

CHEN, Bang-Yen; MAEDA, Sadahiro. Hopf Hypersurfaces with Constant Principal Curvatures in Complex Projective or Complex Hyperbolic Spaces. Tokyo J. Math. 24 (2001), no. 1, 133--152. doi:10.3836/tjm/1255958318. https://projecteuclid.org/euclid.tjm/1255958318


Export citation