Tokyo Journal of Mathematics

Deforming Ricci Positive Metrics

David WRAITH

Full-text: Open access

Abstract

We find conditions under which a Ricci positive metric can be deformed in a tubular neighbourhood of some submanifold to agree with another given Ricci positive metric. We insist that this final metric has everywhere positive Ricci curvature.

Article information

Source
Tokyo J. Math., Volume 25, Number 1 (2002), 181-189.

Dates
First available in Project Euclid: 5 June 2009

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1244208944

Digital Object Identifier
doi:10.3836/tjm/1244208944

Mathematical Reviews number (MathSciNet)
MR1908221

Zentralblatt MATH identifier
1014.53024

Citation

WRAITH, David. Deforming Ricci Positive Metrics. Tokyo J. Math. 25 (2002), no. 1, 181--189. doi:10.3836/tjm/1244208944. https://projecteuclid.org/euclid.tjm/1244208944


Export citation

References

  • I. Chavel, Riemannian Geometry: A Modern Introduction, Cambridge Tracts in Mathematics, 108, Cambridge University Press (1995).
  • L. Z. Gao, Construction of Negatively Ricci Curved Metrics, Math. Ann., 271 (1985), 185–208.
  • L. Z. Gao and S. T. Yau, The Existence of Negatively Ricci Curved Metrics on Three Manifolds, Invent. Math., 85 (1986), 637–652.
  • A. Gray, Tubes, Addison-Wesley (1989).
  • M. Gromov and H. B. Lawson, The Classification of Manifolds of Positive Scalar Curvature, Ann. of Math., 111 (1980), 423–434.
  • J. Lohkamp, Metrics of negative Ricci curvature, Ann. of Math., 140 (1994), 655–683.
  • J. P. Sha and D. G. Yang, Positive Ricci Curvature on the Connected Sums of $S^n\times S^m$, J. Diff. Geom., 33 (1990), 127–138.
  • S. Stolz, Simply connected manifolds of positive scalar curvature, Bull. Amer. Math. Soc., 23 (1990), 427–432.
  • D. Wraith, Exotic Spheres with Positive Ricci Curvature, J. Diff. Geom., 45 (1997).
  • D. Wraith, Surgery on Ricci positive manifolds, J. reine angew. Math., 501 (1998), 99–113.