Tokyo Journal of Mathematics

On the Descriptions of $\mathbf{Z} /p^2 \mathbf{Z}$-Torsors by the Kummer-Artin-Schreier-Witt Theory

Kazuyoshi TSUCHIYA

Full-text: Open access

Article information

Source
Tokyo J. Math., Volume 26, Number 1 (2003), 147-177.

Dates
First available in Project Euclid: 5 June 2009

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1244208687

Digital Object Identifier
doi:10.3836/tjm/1244208687

Mathematical Reviews number (MathSciNet)
MR1982004

Zentralblatt MATH identifier
1085.14038

Citation

TSUCHIYA, Kazuyoshi. On the Descriptions of $\mathbf{Z} /p^2 \mathbf{Z}$-Torsors by the Kummer-Artin-Schreier-Witt Theory. Tokyo J. Math. 26 (2003), no. 1, 147--177. doi:10.3836/tjm/1244208687. https://projecteuclid.org/euclid.tjm/1244208687


Export citation

References

  • A. Grothendieck with J. Dieudonné, Éléments de géométrie algébrique IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967).
  • M. Raynaud, Faisceaux amples sur les schémas en groupes et les espaces homogènes, Lect. Notes Math. 119 (1970), Springer.
  • T. Sekiguchi, F. Oort and N. Suwa, On the deformation of Artin-Schreier to Kummer, Ann. Scient. Éc. Norm. Sup., $4^e$ série, 22 (1989), 345–375.
  • T. Sekiguchi and N. Suwa, A case of extensions of group schemes over a discrete valuation ring, Tsukuba J. Math., 14 (1990), 459–487.
  • T. Sekiguchi and N. Suwa, Théories de Kummer-Artin-Schreier-Witt, C. R. Acad. Sci. Paris, 319 Série I, (1994), 105–110.
  • T. Sekiguchi and N. Suwa, Théories de Kummer-Artin-Schreier et applications, J. de Théorie des Nombres de Bordeaux, 7 (1995), 177–189.
  • T. Sekiguchi and N. Suwa, On the Unified Kummer-Artin-Schreier-Witt theory, Prépublications du laboratoire de Mathématiques Pures de Bordeaux, Prépublication n$^\circ$ 111 (1999).
  • T. Sekiguchi and N. Suwa, A note on extensions of algebraic and formal groups IV, Kummer-Artin-Schreier-Witt theory of degree $p^2,$ Tohoku Math. J., 53 (2001), 203–240.
  • J.-P. Serre, Groupes algébriques et corps de classes, Hermann (1959).
  • W. Waterhouse, A unified Kummer-Artin-Schreier sequence, Math. Ann., 277 (1987), 447–451.
  • W. Waterhouse and B. Weisfeiler, One-dimensional affine group schemes, J. of Alg., 66 (1980), 550–568.