Tokyo Journal of Mathematics

A Note on Anti-Pluricanonical Maps for 5-Folds

Qi-Lin YANG

Full-text: Open access

Abstract

We prove that the anti-pluricanonical map $\Phi_{|-mK_{X}|}$ is birational when $m\geq 16$ for $5$-fold $X$ whose anticanonical divisor is nef and big.

Article information

Source
Tokyo J. of Math. Volume 27, Number 2 (2004), 371-375.

Dates
First available in Project Euclid: 5 June 2009

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1244208395

Digital Object Identifier
doi:10.3836/tjm/1244208395

Mathematical Reviews number (MathSciNet)
MR2107589

Zentralblatt MATH identifier
1063.14015

Subjects
Primary: 14E05: Rational and birational maps
Secondary: 14J30: $3$-folds [See also 32Q25] 14N05: Projective techniques [See also 51N35]

Citation

YANG, Qi-Lin. A Note on Anti-Pluricanonical Maps for 5-Folds. Tokyo J. of Math. 27 (2004), no. 2, 371--375. doi:10.3836/tjm/1244208395. https://projecteuclid.org/euclid.tjm/1244208395


Export citation

References

  • T. Ando, Pluricanonical systems of algebraic varieties of general type of dimension $\leq$ 5, Adv. Stud. in Pure Math., 10 (1987), [Algebraic Geometry$,$ Sendi$,$ 1985], 1–10.
  • M. Chen, A note on pluricanonical maps for varieties of dimension 4 and 5, J. Math. Kyoto Univ. 37 (1997), 513–517.
  • S. Fukuda, A note on Ando's paper “pluricanonical systems of algebraic varieties of general type of dimension $\leq$ 5, Tokyo J. Math. 14 (1991), 479–487.
  • R. Hartshorne, Algebraic Geometry, GTM 52 (1977), Springer.
  • Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to minimal model problem, Adv. Stud. in Pure Math. 10, (1987), [Algebraic Geometry, Sendi, 1985], 283–360.