Tokyo Journal of Mathematics

Boundary Theta Curves in $\mathbf S^3$

Jos\'e Eduardo Prado Pires de CAMPOS

Full-text: Open access

Abstract

It is introduced a split extension of groups $1\rightarrow P_2\rightarrow C_{1,2}\rightarrow \Theta\rightarrow 1$, where $P_2$ is the group of pure braids in 2 strings, $C_{1,2}$ is the group of cobordism classes of (pure) 2-string links and $\Theta$ is the group of cobordism classes of theta curves. The concept of boundary theta curve is introduced and it is proved that the group of boundary cobordism classes of boundary theta curves is isomorphic to the group of boundary cobordism classes of boundary string links in 2 strings.

Article information

Source
Tokyo J. Math., Volume 28, Number 1 (2005), 283-288.

Dates
First available in Project Euclid: 5 June 2009

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1244208293

Digital Object Identifier
doi:10.3836/tjm/1244208293

Mathematical Reviews number (MathSciNet)
MR2149637

Zentralblatt MATH identifier
1083.57004

Citation

CAMPOS, Jos\'e Eduardo Prado Pires de. Boundary Theta Curves in $\mathbf S^3$. Tokyo J. Math. 28 (2005), no. 1, 283--288. doi:10.3836/tjm/1244208293. https://projecteuclid.org/euclid.tjm/1244208293


Export citation

References

  • J. E. P. P. de Campos, Boundary string links, Journal of Knot Theory and Its Ramifications, vol. 8, no. 7 (1999), 855–878.
  • J. Y. Le Dimet, Cobordism d'enlacements de disques, Memoire de la Société Mathématique de France, 32, Supplément au Bulletin de la S.M.F., Tome 116, fascicule 2 (1988).
  • N. Habegger and X. S. Lin, The classification of links up to homotopy, Journal of the American Mathematical Society, vol. 3, no. 2 (1990), 389–419.
  • K. Miyazaki, The theta-curve cobordism group is not abelian, Tokyo J. Math., vol. 17, no. 1 (1994), 165–169.
  • K. Taniyama, Cobordism of theta curves in $S^3$, Math. Proc. Cambridge Philos. Soc., vol. 113 (1993), 97–106.
  • K. Wolcott, The knotting of theta curves and other graphics in $S^3$, Geometry and Topology, edited by C. Mc Crory and T. Shifrin, Marcel Dekker, New York (1987), 325–346.